
A dataset of GitHub Actions workflow histories
Guillaume Cardoen

Guillaume.CARDOEN@umons.ac.be
University of Mons
Belgium, Mons

Tom Mens
Tom.MENS@umons.ac.be

University of Mons
Belgium, Mons

Alexandre Decan∗
Alexandre.DECAN@umons.ac.be

University of Mons
Belgium, Mons

ABSTRACT
GitHub Actions is the de factoworkflow automation tool for GitHub
repositories. Its popularity has increased dramatically over the re-
cent years, opening up opportunities for empirical studies related to
its usage. To enable such studies, we implemented gigawork, an open
source tool for extracting the commit histories of changes to work-
flow files in GitHub repositories. Using this tool we collected and
publicly released a dataset of 160K+ commit histories of workflow
files in 32K+ public GitHub repositories, covering 1.5M+ workflow
file versions. In order to facilitate its use by other researchers, the
dataset includes relevant metadata related to workflow file changes
in each commit. gigawork is publicly released on PyPi. Its associated
dataset can be found on Zenodo (DOI: 10.5281/zenodo.10259013).

KEYWORDS
software repository mining, GitHub Actions, software evolution,
workflow automation, empirical software engineering

ACM Reference Format:
Guillaume Cardoen, Tom Mens, and Alexandre Decan. 2024. A dataset
of GitHub Actions workflow histories. In 21st International Conference on
Mining Software Repositories (MSR ’24), April 15–16, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3643991.3644867

1 INTRODUCTION
CI/CD tools automate many repetitive activities that reduce work-
load and increase quality during collaborative software develop-
ment. Until 2020, Travis used to be themost prevalent CI/CD service
on GitHub [10], resulting in many empirical studies [1, 6, 17, 18, 20–
22], partly thanks to datasets like TravisTorrent [2]. In November
2019, GitHub integrated GitHub Actions as a new workflow au-
tomation service. Only 18 months after its introduction, it overtook
Travis and its competitors for a diverse set of reasons [15].

GitHub repository maintainers that want to automate activities
with GitHub Actions can define workflows in the .github/workflows
directory. Such workflows must respect the YAML-based syntax
described in GitHub’s online documentation.1 To facilitate the de-
velopment and use of workflows, one can rely on reusable workflow

∗F.R.S.-FNRS Research Associate
1https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-
actions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04. . . $15.00
https://doi.org/10.1145/3643991.3644867

components called Actions, most of which are publicly available on
the GitHub Marketplace.2 Because empirical research on GitHub
Actions workflows is on the rise [3, 8, 13, 16, 19], there is a need for
historical datasets related to these workflows, allowing researchers
to conduct large-scale empirical studies. Such studies require a large
quantity of workflow files from a variety of repositories.

Previous research on GitHub Actions already used some lim-
ited workflow file datasets. In a preliminary analysis on the usage
of GitHub Actions workflows in early 2021, Kinsman et al. [13]
assembled a dataset of workflow files and their history collected
from 3,190 GitHub repositories. Decan et al. [9] created a dataset
of nearly one million workflow files obtained from monthly snap-
shots of 22K+ repositories to study the outdatedness of the GitHub
Actions ecosystem. In a more detailed analysis of GitHub Actions
workflows, Decan et al. [8] built and released a dataset of monthly
snapshots of workflow files until January 2022, coming from nearly
30K repositories. The snapshot-based nature of these datasets does
not allow to obtain the full workflow history of individual reposi-
tories. Recent research using one of these datasets [5, 11] revealed
the need for a more complete, maintainable and extendable dataset
of GitHub Actions workflow files and their history.

Hence, this paper presents a new dataset of GitHub Actions
workflow files, that is more recent (October 2023), covers a larger
amount of repositories (32,882 to be precise), and contains their full
workflow histories and other relevant metadata about workflow
changes. We also present an open-source tool allowing to update
and further expand this dataset.

Section 2 presents gigawork, a tool for extracting GitHub Actions
workflow histories from GitHub repositories. Section 3 presents the
dataset that has been obtained by means of this tool. Section 4 illus-
trates through an exploratory empirical analysis how the dataset
can be used. Section 5 discusses some limitations of the dataset,
and Section 6 concludes.

2 WORKFLOW EXTRACTION TOOL
To enable the extraction of workflows from GitHub repositories,
we developed gigawork, which is an acronym for “Give me GitHub
Actions Workflows”. gigawork comes as an open source tool, with
a command-line interface, hosted on GitHub.3 It has been imple-
mented in Python 3 and relies on the open source module git-
python.4

gigawork is distributed through PyPI and can be installed via pip
(using pip install gigawork). After installation, one can extract
the workflows of a repository stored at repoPath by issuing the
command gigawork repoPath.

2https://github.com/marketplace
3https://github.com/cardoeng/gigawork
4https://github.com/gitpython-developers/GitPython

https://orcid.org/0009-0005-2008-3565
https://orcid.org/0000-0003-3636-5020
https://orcid.org/0000-0002-5824-5823
https://pypi.org/project/gigawork
https://zenodo.org/doi/10.5281/zenodo.10259013
https://doi.org/10.1145/3643991.3644867
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://doi.org/10.1145/3643991.3644867
https://github.com/marketplace
https://github.com/cardoeng/gigawork
https://github.com/gitpython-developers/GitPython

MSR ’24, April 15–16, 2024, Lisbon, Portugal Guillaume Cardoen, Tom Mens, and Alexandre Decan

gigawork iterates through all ancestor commits of a given git
reference, git HEAD by default, following the first-parent rule.5
Whenever gigawork finds such commits, it extracts the workflow
files that were touched, and saves them in the workflows directory
of the current working directory, unless asked otherwise. Metadata
about the commits and extracted files are, by default, sent to the
standard output. The use of gigawork can be customised through
optional arguments. Below we provide an example:

gigawork https://github.com/cardoeng/gigawork
--save-repository repositoryName --output file.csv
--workflows extractedWorkflows --after v1.0.0

--save-repository specifies the name underwhich a remote repos-
itory will be saved on disk. If not provided for a remote repository,
a temporary directory will be created for fetching it and will be
deleted after the extraction.
--update allows to specify that a (local) repository will be updated
prior to analysing the repository.
--output allows the user to redirect the metadata output to a given
CSV file. By default, the standard output is used.
--workflows allows to specify the directory where all extracted
files will be stored. By default, a directory workflowswill be created
and used.
--branch allows to specify the git reference starting from which
gigawork will extract ancestor commits. This reference can notably
be used to specify the branch in which commits will be considered
for extraction. By default, this value equals to the git HEAD.
--after specifies the git reference at which gigawork will stop the
extraction. By default, gigawork stops once it reaches a commit
with no ancestors. --after can be combined with --branch to
specify the interval of commits that should be considered. They
can be used to explore parallel branches or to extend and update
an already existing dataset.
Other arguments exist and are described in the help documentation
of the tool.

3 DATASET OF GITHUB ACTIONS
WORKFLOWS

Using gigawork (version 1.2.0), we extracted 1,601,709 files stored
in the .github/workflows directory of 32,886 GitHub reposito-
ries. The extracted files and related metadata are publicly available
on https://zenodo.org/doi/10.5281/zenodo.10259013. Next to work-
flow files, the .github/workflows may also include auxiliary files.
Because such files could be relevant for certain types of empiri-
cal analyses, we decided to include them as well. We consider a
file to be a workflow if the following conditions are met: (1) the
file extension is either yaml or yml; (2) the file is not contained
in some subdirectory of .github/workflows. Following the afore-
mentioned heuristic, the extracted files were subdivided in 1,526,475
workflow files and 75,234 auxiliary files.

To create the dataset, we used the SEART search engine [7] on
11 October 2023 to obtain an initial list of candidate GitHub reposi-
tories, by applying the following filters: (1) at least 300 commits;
(2) at least 100 stars; (3) the repository is not a fork; (4) repository
creation date before January 1st, 2023; (5) at least one commit after
5This rule dictates that, when traversing the git history, git only follows the first parent
of each commit. In case of merge commit, it thus only follows one branch.

January 1st, 2023. These criteria aimed to exclude personal and
experimental repositories [12], focusing on sufficiently popular and
recently active repositories, assuming that such repositories are
more likely to rely on automated workflows.

46,281 GitHub repositories matching these criteria were obtained.
For all these repositories, we checked whether they contained a
.github/workflows directory, which is a necessary condition to
use GitHub Actions workflows. Only 33,209 repositories (71.8% of
the candidate list) matched this condition. We cloned each of these
repositories between 11th and 13h of October 2023. 168 repositories
could not be cloned because of errors during the cloning process.
We then applied gigawork on the default branch6 of the remaining
33,041 GitHub repositories. 159 of these repositories did not con-
tain any files within their .github/workflows directory and were
therefore excluded, resulting in a final dataset of 32,886 repositories.
While 4 repositories did not contain any workflow file, they are still
included in the dataset because they do contain auxiliary files.

Table 1 summarises the characteristics of the extracted data.
1,004,202 of the commits touch at least one of the 1,526,475 ex-
tracted workflow files. These commits include a total of 1,342,662
workflow file modifications, 147,978 additions and 35,835 deletions.
The earliest commit date affecting a workflow file is July 11th, 2019.
The last commit for each repository contains 3.46 workflow files
on average (with a median of 2 and a maximum of 178).

Table 1: Characteristics of the dataset of workflow files

characteristic value

GitHub repositories 32,886
repositories containing workflow files 32,882
commits touching workflow files 1,004,202
earliest commit date containing a workflow 2019-07-11
latest commit date containing a workflow 2023-10-12
workflow histories 160,443
workflow files 1,526,475
modifications 1,342,662
additions 147,978
deletions 35,835

auxiliary files 75,234

Based on the data extracted using gigawork, we created a dataset
composed of extracted workflow and their metadata. The dataset
content is described at Table 2.

Table 2: Structure of the dataset

file description

workflows.tar.gz Compressed archive containing the extracted files
found in the .github/workflows directory of each
repository (cf. Table 1).

workflows.csv.gz Compressed CSV file containing, for each repository,
relevant metadata for each extracted workflow file,
such as the name, email and date of the author and
committer for each commit (cf. Table 3).

auxiliaries.csv.gz A similar compressed CSV file for the extracted aux-
iliary files.

repositories.csv.gz Compressed CSV file provided by SEART [7] contain-
ing metadata of every considered repository such as
the number of stars, contributors, main language, . . .

6As reported by SEART.

https://zenodo.org/doi/10.5281/zenodo.10259013

A dataset of GitHub Actions workflow histories MSR ’24, April 15–16, 2024, Lisbon, Portugal

Table 3: Metadata stored for each file change.

column description

repository The repository from which the workflow was extracted
commit_hash The commit hash returned by git
author_name The name of the author that changed this file
author_email The email of the author that changed this file
committer_name The name of the committer
committer_email The email of the committer
committed_date The committed date of the commit
authored_date The authored date of the commit
file_path The path to this file
previous_file_path The path to this file before it has been touched
file_hash The name of the related workflow file in the dataset
previous_file_hash The name of the related workflow file in the dataset, before

it has been touched
change_type A single letter (A,D or M) representing the type of change

made to the workflow (Added, Deleted orModified)

Table 4 provides an excerpt of the output generated by gigawork
on a GitHub repository that uses GitHub Actions. The value of
the change_type field in the metadata can be either A, D or M
representing respectively an Added, Deleted or Modified file. These
letters are the ones used by git when detecting the change type. If
a file is renamed, it will appear as Modified.

To avoid storing identical file contents multiple times, a SHA-
256 value is computed for each workflow file, and files with the
same hash are stored only once. In this way, we avoided storing
156,933 identical workflowfiles, representing 10.36% of the complete
dataset.

4 EXPLORATORY EMPIRICAL ANALYSIS
The presented dataset can be used by researchers as a starting
point for empirical studies on GitHub Actions workflows, such
as [8, 9, 13]. To illustrate how to use our dataset for such empirical
research, we conducted an exploratory analysis. We focused on two
of Lehman’s laws of software evolution [14]: increasing growth and
continuing change, hypothesising that both laws should apply for
workflows, given that these are code-related software artefacts.

Increasing growth. Figure 1 shows the evolution of the number
of workflows and repositories in the dataset, as well as the evolution
of workflow-to-repository ratio. One can observe an increase over
time in the number of workflows being used by GitHub repositories.
This increase is likely due to an overall increase in the number
of GitHub repositories over time combined with an increase in
GitHub Actions usage by GitHub repositories [10]. The workflow-
to-repository-ratio shows an increasing growth, confirming that
workflows are indeed becoming increasingly used by repository
maintainers. A linear regression analysis (dashed line in Figure 1)
strongly suggests a linear growth trend (coefficient of determination
is 𝑅2 = 0.995). One can observe a variation in the growth trend of
workflows near the end of 2020. It is difficult to pinpoint the exact
cause of this variation, but it coincides with reported evidence of
many public repositories switching from Travis to GitHub Actions
around this time, a consequence of the restrictions imposed by
Travis on its free plan [10].

A complementary view on increasing growth pertains to how the
size of workflows evolves over time. Figure 2 shows the evolution
of the median size of workflow files measured as: (1) the number

Figure 1: Evolution of the number (left axis) and ratio (right
axis) of workflows and repositories.

Figure 2: Evolution of the median number of lines (left y-
axis) and steps (right y-axis) of workflow files.

of non-empty lines in the workflow file; (2) the number of steps
contained in the workflow file. Steps are the main building blocks
of workflows, allowing to run specific tasks, either by relying on a
reusable Action, or by running commands directly in the runner
environment.

We found a strong correlation between both size measures (Pear-
son correlation coefficient of 0.91). The median number of steps
seems to be quite stable over time (between 5 and 6 steps). The
median number of lines increased until August 2021, after which it
stabilises at 39-40 lines. We also computed the median number of
jobs over time, but this value remained equal to 1 during the entire
observation period, signifying that the majority of workflows only
specify a single job (containing multiple steps).

Continuing change. Figure 3 shows the monthly evolution of
the number of workflow files that are added, deleted or modified in
the dataset. If a same workflow file was modified multiple times in
the same month, it is only counted once. The monthly number of
added workflows continues to increase until between November
2020 and January 2021 where it reaches its highest value: 4,277,
4,169 and 4,077 workflows, respectively for November, December
and January. This again coincides with the restrictions imposed on
Travis’ free plan for public repositories [10], that might have lead
repositories to switch to GitHub Actions instead.7 From February
7We could not verify this assumption since our dataset does not provide any informa-
tion about Travis usage.

MSR ’24, April 15–16, 2024, Lisbon, Portugal Guillaume Cardoen, Tom Mens, and Alexandre Decan

Table 4: Example of a real CSV output file accompanying the extracted workflows (ungc* = users.noreply.github.com)

commit author
name

author email committer
name

committer email committed
date

authored
date

file_path file_hash change
type

82c0ae Tom Mens tom.mens@umons.ac.be Tom Mens tom.mens@umons.ac.be 1671725010 1671708385 coverage.yml 01a7cb D
82c0ae Tom Mens tom.mens@umons.ac.be Tom Mens tom.mens@umons.ac.be 1671725010 1671708385 maven.yml e9d48c M
6c97b6 Tom Mens tommens@ungc* GitHub noreply@github.com 1611568580 1611568580 coverage.yml 01a7cb A
156661 Tom Mens tom.mens@umons.ac.be Tom Mens tom.mens@umons.ac.be 1610144869 1610144869 codecov.yml f5b2c2 D
4ed007 Tom Mens tommens@ungc* GitHub noreply@github.com 1610141430 1610141430 codecov.yml f5b2c2 A
a68b53 Tom Mens tom.mens@umons.ac.be Tom Mens tom.mens@umons.ac.be 1610128723 1610128723 maven.yml 2bb6d2 A

Figure 3: Number of workflow files (on log-scale) touched
by commits on a monthly basis (based on the commit date),
grouped by change type (added, deleted or modified).

2021 until March 2023, the monthly number of workflow file addi-
tions remains more or less stable, fluctuating between 3,104 and
3,693. After March 2023, the monthly number of additions decreases
again, down to 2,302 in September 2023. The monthly number of
deletions gradually increases up to 1,268 in March 2023, followed
by a decrease down to 853 in September 2023.

Since 1 November 2019 the monthly number of modifications
increased from 3,170 to 57,207 in September 2023. The monthly
number of modifications thus tends to increase with time, which is
expected since all of the workflows that are being added over time
need to be maintained. This increase over time and the number of
modifications confirms that GitHub Actions workflows follow the
law of continuing change

We can therefore conclude that we found empirical evidence in
favour of the laws of increasing growth and continuing change of
GitHub Actions workflow files.

5 LIMITATIONS
The dataset of GitHub Actions workflow histories is subject to some
limitations. First, as the extraction of our dataset is based on git, we
are subject to the intrinsic limitations of mining git histories [4].

Second, we only considered repositories given by the SEART
GitHub search tool [7], limiting the scope to GitHub repositories
with at least 300 commits and 100 stars. This allowed us to exclude
abandoned, personal or experimental repositories, but may have
excluded smaller or less active projects relying on GitHub Actions.

Third, before cloning the repositories, we checked whether they
contained a .github/workflows directory. However, this implies
that we potentially excluded repositories that were making use of

GitHub Actions workflows but stopped using it and deleted this
directory.

Finally, we only considered commits occurring on the default
branch following the first-parent rule. As such, commits occurring
in parallel branches were not considered. On the other hand, the
changes made to workflow files in these commits are still visible in
the dataset when they are eventually merged back to the default
branch. It is worthmentioning that gigawork can be applied on these
parallel branches, and thus, overcomes this limitation if necessary.

6 CONCLUSION
GitHub Actions is a widely used CI/CD service [15]. Its popularity
leads to many empirical researches [3, 8, 13, 16, 19], often requiring
large datasets of GitHub Actions workflow files and their history.
We developed gigawork, an open-source command-line tool for
extracting (the history of) GitHub Actions workflows and their
metadata. We applied this tool on a large set of repositories, and
released a publicly accessible dataset of the evolution of workflow
files used in GitHub repositories.

The dataset contains 160K+ workflow histories (totalling 1,5M+
distinct workflow files) obtained from 32K+ public GitHub repos-
itories and reflecting the evolution of workflow usage since the
introduction of GitHub Actions in November 2019. Such a dataset
is valuable for researchers as it enables future in-depth empirical
research on GitHub Actions workflows without requiring to per-
form the time-consuming and error-prone task of collecting large
collections of workflow histories. We illustrated the usability of our
dataset by providing empirical evidence that workflow files follow
Lehman’s laws of increasing growth and continuing change.

ACKNOWLEDGMENTS
This work is supported by the Fonds de la Recherche Scientifique -
FNRS under grant numbers T.0149.22, F.4515.23 and J.0147.24.

REFERENCES
[1] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke

the Build: An Explorative Analysis of Travis CI with GitHub. In International
Conference on Mining Software Repositories (MSR). 356–367. https://doi.org/10.
1109/MSR.2017.62

[2] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Syn-
thesizing Travis CI and GitHub for full-stack research on continuous integration.
In International Conference on Mining Software Repositories (MSR). IEEE, 447–450.

[3] Giacomo Benedetti, Luca Verderame, and Alessio Merlo. 2022. Automatic Security
Assessment of GitHub Actions Workflows. InWorkshop on Software Supply Chain
Offensive Research and Ecosystem Defenses. ACM, 37–45. https://doi.org/10.1145/
3560835.3564554

[4] Christian Bird, Peter C. Rigby, Earl T. Barr, David Hamilton, Daniel M. German,
and Prem Devanbu. 2009. The Promises and Perils of Mining Git. In Working
Conference on Mining Software Repositories (MSR). IEEE Computer Society. https:
//doi.org/10.1109/MSR.2009.5069475

https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1145/3560835.3564554
https://doi.org/10.1145/3560835.3564554
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/MSR.2009.5069475

A dataset of GitHub Actions workflow histories MSR ’24, April 15–16, 2024, Lisbon, Portugal

[5] Islem Bouzenia and Michael Pradel. 2024. Resource Usage and Optimization
Opportunities in Workflows of GitHub Actions. In International Conference on
Software Engineering (ICSE). IEEE Computer Society, 268–279.

[6] Nathan Cassee, Bogdan Vasilescu, and Alexander Serebrenik. 2020. The Silent
Helper: The Impact of Continuous Integration on Code Reviews. In International
Conference on Software Analysis, Evolution and Reengineering (SANER). 423–434.
https://doi.org/10.1109/SANER48275.2020.9054818

[7] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In International Conference on Mining Software Reposito-
ries (MSR). IEEE, 560–564.

[8] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh.
2022. On the Use of GitHub Actions in Software Development Repositories. In
International Conference on Software Maintenance and Evolution (ICSME). IEEE.
https://doi.org/10.1109/ICSME55016.2022.00029

[9] Alexandre Decan, Tom Mens, and Hassan Onsori Delicheh. 2023. On the outdat-
edness of workflows in the GitHub Actions ecosystem. Journal of Systems and
Software 206 (2023). https://doi.org/10.1016/j.jss.2023.111827

[10] Mehdi Golzadeh, Alexandre Decan, and TomMens. 2022. On the rise and fall of CI
services in GitHub. In International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE. https://doi.org/10.1109/SANER53432.2022.00084

[11] Jiangnan Huang and Bin Lin. 2023. CIGAR: Contrastive Learning for GitHub
Action Recommendation. In International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, 61–71.

[12] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In International Conference on Mining Software Repositories (MSR). ACM, 92–101.
https://doi.org/10.1145/2597073.2597074

[13] Timothy Kinsman, Mairieli Wessel, Marco A Gerosa, and Christoph Treude. 2021.
How do software developers use GitHub Actions to automate their workflows?.
In International Conference on Mining Software Repositories (MSR). IEEE, 420–431.

[14] M.M. Lehman, J.F. Ramil, P.D.Wernick, D.E. Perry, andW.M. Turski. 1997. Metrics
and laws of software evolution - the nineties view. In Fourth International Software
Metrics Symposium. 20–32. https://doi.org/10.1109/METRIC.1997.637156

[15] Pooya Rostami Mazrae, Tom Mens, Mehdi Golzadeh, and Alexandre Decan. 2023.
On the usage, co-usage and migration of CI/CD tools: A qualitative analysis.
Empirical Software Engineering 28, 2 (2023), 52. https://doi.org/10.1007/s10664-
022-10285-5

[16] Pablo Valenzuela-Toledo and Alexandre Bergel. 2022. Evolution of GitHub Ac-
tion Workflows. In International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE.

[17] Bogdan Vasilescu, Stef van Schuylenburg, Jules Wulms, Alexander Serebrenik,
and Mark G.J. van den Brand. 2014. Continuous Integration in a Social-Coding
World: Empirical Evidence from GitHub. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 401–405. https://doi.org/10.1109/
ICSME.2014.62

[18] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Joint Meeting on Foundations of Software Engineering (FSE).
805–816.

[19] Mairieli Wessel, Tom Mens, Alexandre Decan, and Pooya Rostami Mazrae. 2023.
The GitHub Development Workflow Automation Ecosystems. In Software Ecosys-
tems: Tooling and Analytics. Springer.

[20] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for It: Determinants of Pull Request Evaluation Latency on
GitHub. InWorking Conference on Mining Software Repositories (MSR). 367–371.
https://doi.org/10.1109/MSR.2015.42

[21] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, andMassimiliano Di Penta.
2021. CI/CD pipelines evolution and restructuring: A qualitative and quantitative
study. In International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 471–482.

[22] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: A large-scale empirical study. In International Conference
on Automated Software Engineering (ASE). 60–71. https://doi.org/10.1109/ASE.
2017.8115619

https://doi.org/10.1109/SANER48275.2020.9054818
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1016/j.jss.2023.111827
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/METRIC.1997.637156
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1109/ICSME.2014.62
https://doi.org/10.1109/ICSME.2014.62
https://doi.org/10.1109/MSR.2015.42
https://doi.org/10.1109/ASE.2017.8115619
https://doi.org/10.1109/ASE.2017.8115619

	Abstract
	1 Introduction
	2 Workflow Extraction Tool
	3 Dataset of GitHub Actions workflows
	4 Exploratory empirical analysis
	5 Limitations
	6 Conclusion
	Acknowledgments
	References

