
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.X, NO.Y, DATE 1

What Do Package Dependencies Tell Us
About Semantic Versioning?

Alexandre Decan, Member, IEEE, Tom Mens, Senior Member, IEEE

Abstract—The semantic versioning (semver) policy is commonly accepted by open source package management systems to inform
whether new releases of software packages introduce possibly backward incompatible changes. Maintainers depending on such
packages can use this information to avoid or reduce the risk of breaking changes in their own packages by specifying version
constraints on their dependencies. Depending on the amount of control a package maintainer desires to have over her package
dependencies, these constraints can range from very permissive to very restrictive. This article empirically compares semver
compliance of four software packaging ecosystems (Cargo, npm, Packagist and Rubygems), and studies how this compliance evolves
over time. We explore to what extent ecosystem-specific characteristics or policies influence the degree of compliance. We also
propose an evaluation based on the “wisdom of the crowds” principle to help package maintainers decide which type of version
constraints they should impose on their dependencies.
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1 INTRODUCTION

CONTEMPORARY software development is increasingly
relying on reusable software packages, stored in open

source package distributions for a wide variety of program-
ming languages (e.g., Maven for Java, npm for JavaScript,
Rubygems for Ruby, Packagist for PHP, Cargo for Rust).
These package distributions can be considered as software
ecosystems, consisting of large collections of interdependent
software projects developed and maintained in the same
environment [1]. In the remainder of this paper we will
refer to the package dependency networks of such package
distributions as packaging ecosystems.

These packaging ecosystems can suffer from a wide
variety of health problems, that can be of social or business-
related nature, or related to technical issues [2], [3]. This
paper focuses on the technical health issues of package de-
pendency networks. Typical examples are problems related
to software bugs, security vulnerabilities, outdated and un-
maintained packages, and source code that is of low quality,
untested or duplicated. Such technical problems can become
quite difficult to manage because of the sheer size and
complexity of package dependency networks and because
of the speed of growth and change of such networks [4], [5].

Semantic versioning, hereafter abbreviated as semver,
has been proposed as a solution to the so-called “depen-
dency hell” to which maintainers of software packages in
package ecosystems are often confronted. Maintainers of
packages that depend on reusable libraries need to cope
with a delicate balance. They need to keep their package
dependencies up to date to be able to benefit from bug and
security fixes and new functionalities, but it may require
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significant effort to upgrade the package dependencies,
especially if changes are backward incompatible [4]. Main-
tainers of reusable packages are confronted with the same
challenge: they need to regularly update their packages
with new functionalities and bug or security fixes to keep
their “clients” satisfied; but they should avoid introducing
breaking changes too frequently as this imposes an extra
burden on the maintainers of dependent packages.

semver provides a partial solution by introducing a set
of simple rules that suggest how to assign version numbers
to inform developers about potentially breaking changes.
Based on this, packages can specify dependency constraints
that allow automatic patch updates or minor updates for
“trusted” dependencies. However, since semver is just a
policy, it cannot really be imposed, only embraced by a soft-
ware community as an acceptable way to express whether
package releases introduce breaking changes. Not respect-
ing the policy can cause major problems due to unexpected
breaking changes in dependent packages.

An anecdotal example in the npm packaging ecosystem
was the backward incompatible minor release 1.7.0 of pack-
age underscore that led many maintainers of dependent
packages to complain about not respecting the semver pol-
icy.1 Another example, in the Rubygems packaging ecosys-
tem, was the backward incompatible minor release 0.5.0 of
package i18n that notably broke the popular activerecord
package, on which relied over 900 packages (accounting for
more than 5% of the entire packaging ecosystem at the time).

The goal of this paper is to assess to what extent
maintainers in different packaging ecosystems rely on the
semver policy to define the dependency constraints for the
packages they maintain, and to what extent semver can be
assumed to be followed by required packages. Although the

1. github.com/jashkenas/underscore/issues/1805
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rules of semver are quite simple, the problem of checking
whether a version is compatible is undecidable in general.
Even in practice, it is extremely difficult to assess that a
version does not contain backward incompatible changes.
Only a meticulous analysis of the semantics of the code can
allow to assess its compatibility. Because it is impractical
to do so at ecosystem scale, we use package dependency
constraints as a proxy to assess if a maintainer trusts a re-
quired package w.r.t. backward compatibility. Dependency
constraints can be either compliant to, more restrictive than,
or more permissive than what is suggested by the semver
policy. Analysing the evolution of this semver-compliance
at the packaging ecosystem level provides insights in the
extent to which an ecosystem embraces semver. Inspired
by Bogart et al. [4], who observed that different ecosystem
communities have different habits and values, we expect to
find important variations across these ecosystems.

The empirical findings could be used as a basis for
ecosystem contributors. For example, a package maintainer
could be informed about how safe it is to use a semver-
compliant package dependency constraint based on the
wisdom of the crowds principle. If other dependents of
the required package use semver-compliant constraints, it
is likely that that package is respecting the semver policy.

The remainder of this paper is structured as follows.
Section 2 summarises the main principles of semantic ver-
sioning. Section 3 discusses related work. Section 4 intro-
duces the necessary terminology and presents the research
methodology. Section 5 to Section 9 each address the re-
search questions and present the main research findings.
Section 10 discusses the actionability of the results and
outlines future research avenues. Section 11 presents the
threats to validity of the research and Section 12 concludes.

2 SEMANTIC VERSIONING

Tom Preston-Werner, co-founder of GitHub, introduced the
semver specification in September 2011.2 It can be con-
sidered as a de facto standard that is commonly used by
many software package management systems and other
open source or even commercial software projects. In the
remainder of this manuscript we will rely on version 2.0.0
(June 2013) of the specification [6].

The main purpose of semver is to allow providers of
software packages to specify to what extent changes in
newer package releases are backward compatible. Develop-
ers that write software depending on such packages can use
this information to decide how “permissive” they can be
in automatically accepting new releases of such packages.
Being more restrictive allows developers to keep full control
over package dependencies, at the risk of packages becom-
ing outdated and not being able to benefit from backward
compatible updates. Being more permissive allows one to
automatically benefit from patch updates containing bug or
security fixes [7].

While the idea of semver is very promising, it is not
always followed by package maintainers. In his npm blog,
Bharathvaj Ganesan [8] states that “SemVer is very popular
and the most misused software versioning scheme in the

2. semver.org

JavaScript universe” and “many contributors of popular li-
braries usually do not care or break the rules of the semantic
versioning”. This is confirmed by a recent survey of more
than 2,000 developers from different software ecosystems [9]
where, even if 92% of the respondents (for npm) claim they
always increment the leftmost digit (semantic versioning) if
a change might break downstream code, still 70% of the re-
spondents declare they find out that a dependency changed
because something breaks when they try to build their own
package. These observations motivated us to empirically
study to what extent different ecosystems comply to semver.

semver proposes a multi-component version scheme
major.minor.patch[-tag] to specify the type of changes that
have been made in new package releases. Backward in-
compatible changes require an update of the major version
component, important backward compatible changes (e.g.,
adding a new functionality that does not affect the existing
ones) require an update of the minor version component,
and backward compatible bug fixes require an update of
the patch component. The optional tag component allows
to specify pre-releases (e.g., 2.1.3-alpha, 0.5.0-beta, 3.0.0-rc).
Pre-releases indicate unstable versions that might not satisfy
the intended compatibility requirements as denoted by their
associated normal version.

The combined use of semver and a dependency constraint
mechanism allows package maintainers to decide how flex-
ible their packages can be in accepting future releases
of their dependencies. semver has been introduced and
used in different software packaging ecosystems, such as
Cargo (for Rust), npm (for JavaScript), Packagist (for PHP)
or Rubygems (for Ruby). The degree to which semver is
respected may vary from one ecosystem to another, and
depends on ecosystem-specific characteristics, such as the
way in which dependency constraints are expressed and
enforced. The types of constraints used express the extent
to which a package dependency is compliant with semver
(e.g., npm uses ∧ to accept all minor and patch updates),
or on the contrary more restrictive (e.g., npm uses ∼ to
allow patch updates only) or more permissive (e.g., npm
uses latest to accept any future release).

3 RELATED WORK

Managing package dependencies and their associated de-
pendency constraints requires a delicate trade-off between
the optimistic approach of adopting new versions of re-
quired packages but having to face potential breaking
changes, and the conservative approach of relying on stable
but outdated versions of required packages with the risk
of missing potentially important updates. Commercial soft-
ware development may favor the conservative approach,
because the risk, cost and effort involved with updating
dependencies may be too high for something that is already
working. We hypothesise that open source software devel-
opment is more likely to favor the optimistic approach.

Many researchers have studied dependencies in pack-
aging ecosystems. Bavota et al. [10] studied the evolution
of dependencies in the Apache ecosystem and highlighted
that the number of dependencies is growing exponentially
and must be taken care of by developers. They found that
developers were reluctant to upgrade the packages they

semver.org
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depend upon because of breaking changes. Developers are
more likely to adopt a new version only when it includes
major improvements.

Decan et al. [11] studied the CRAN ecosystem and
observed that more than 40% of the failures observed in
CRAN packages are caused by incompatible changes in
their dependencies. Decan et al. [5] compared the evolu-
tion of the package dependency networks of Cargo, CPAN,
CRAN, npm, NuGet, Packagist and Rubygems. They pro-
posed novel metrics to capture their growth, changeability,
reusability and fragility. They observed that an increasing
majority of the packages depend on other packages, and
there is a high proportion of “fragile” packages due to a
high and increasing number of (transitive) dependencies.

Mostafa et al. [12] detected backward compatibility prob-
lems in Java libraries by performing regression tests on
version pairs, and by inspecting bug reports related to ver-
sion upgrades. Xavier et al. [13] extracted breaking changes
from APIs through a diff tool that collected such changes
between two versions of a Java library. In a large-scale
empirical study on API breaking changes, they found that
Java libraries are often backward incompatible and the rate
of breaking changes increases over time.

Bogart et al. [4] conducted a qualitative comparison of
npm, CRAN and Eclipse, to understand the impact of com-
munity values, tools and policies on breaking changes. They
found that there are two main types of mitigation strategies
to reduce the exposure to changes in dependencies: limit-
ing the number of dependencies, and depending only on
“trusted packages”. In a follow-up work, they interviewed
more than 2,000 developers about values and practices in
18 ecosystems [9]. Among other findings, they observed
that package maintainers are frequently exposed to breaking
changes, and mainly discover them at build time.

The semantic versioning policy was introduced to help
developers identify incompatible updates in required pack-
ages, but it is not always well-respected by developer com-
munities. Wittern et al. [14] studied the evolution of a subset
of JavaScript packages in npm, analysing characteristics
such as their dependencies, update frequency, popularity,
version numbering and so on. They observed that the ver-
sioning conventions that maintainers use for their packages
are not always compatible with semver.

Raemaekers et al. investigated the use of semver in 22K
Java libraries in Maven over a seven-year time period. They
found that breaking changes appear in one third of all re-
leases, including minor releases and patches [15], implying
that semver is not a common practice in Maven. Because of
this, many packages use strict dependency constraints and
package maintainers avoid upgrading to newer versions of
dependent packages. Their approach relies on clirr, a tool
that detects breaking API changes through static analysis of
Java code. However, the tool does not detect the presence of
breaking changes due to logical changes in the code. While a
similar tool could be developed for other languages as well,
it requires a clear separation between the public and private
API, and such a distinction does not explicitly exist in many
dynamic languages such as JavaScript or Python, making
the accurate detection of breaking changes much harder.

While dependency constraints can be helpful to prevent
dependent packages from breaking after the introduction

of a backward incompatible change, such constraints can
lead to dependency conflicts when multiple versions of a
same library are required by different packages. Wang et
al. [16] studied such dependency conflicts in Java projects.
In the presence of multiple installed versions of a same
package, because the JVM loads one version and shadows
the others, issues may occur when the loaded version fails
to provide a required feature. They conducted an empirical
study of those issues in 71 Apache projects, and showed that
dependency conflicts are very common in practice. They
also provided a tool to detect such issues.

Dependency conflicts can lead to co-installability issues
when multiple versions of a same library are not allowed
to be installed at the same time. The problem of identifying
a set of versions that satisfy all dependency constraints is
known to be NP-complete, and was notably addressed by
Di Cosmo et al. [17], [18], [19].

Several researchers have studied the problem of out-
dated package dependencies. Kula et al. [20] analyzed over
6K Java libraries in Maven to investigate the latency in
adopting the latest release of dependency targets. They also
investigated over 4.6K GitHub projects with dependencies
on 2.7K distinct Maven packages and found that more
than 80% of the studied systems have outdated dependen-
cies [21]. Decan et al. [22] studied the use of package de-
pendency constraints in npm, CRAN and Rubygems. They
observed that, while strict dependency constraints prevent
backward incompatibility issues, they also increase the risk
of having dependency conflicts, outdated dependencies and
missing important updates.

Cox et al. [23] revealed that systems with outdated de-
pendencies are four times more likely to have security issues
than systems that are up-to-date. Derr et al. [24] conducted
a survey with more than 200 mobile app developers in
the Android ecosystem to investigate the use of outdated
libraries, and reported that almost 98% of 17K actively used
library versions with a known security vulnerability could
be easily fixed by updating the library. Decan et al. [25]
empirically studied nearly 400 security reports for 269 npm
packages, and found that more than 40% of the releases
depending on a vulnerable package do not automatically
benefit from the security fixes because of too restrictive
dependency constraints.

Cox et al. [23] also proposed different metrics to quantify
a software system’s dependency freshness. They assessed the
usefulness of these metrics through interviews with techni-
cal consultants and showed that their objective metrics are
in agreement with the subjective perception of dependency
freshness. Gonzalez-Barahona et al. [26] introduced the con-
cept of technical lag to measure how outdated a system
is with respect to its dependencies. They defined technical
lag in terms of a lag function and lag aggregation function
for packages. Decan et al. [27] measured such technical lag
for npm packages and observed that a large number of
packages have outdated dependencies, and a large number
of dependencies have a technical lag of several months. As a
follow-up work, Zerouali et al. [28] proposed and validated
a formal framework for technical lag measurement.

In order to help developers decide when to use which
version of a software library, Mileva et et al. [29] proposed
an approach and associated tool based on the “wisdom of
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the crowds”. If a library version is used by more developers,
it is more likely to be recommended. The tool was validated
on hundreds of Java libraries in the Maven repository. They
acknowledge that other context-specific factors need to be
taken into account to recommend the most appropriate ver-
sion of a library, and that a cost-benefit analysis is required
to decide whether or not to switch to a new library version.

Most of the related work about breaking changes relies
on static code analysis of the component being updated
and on the computation of a call graph of the dependent
component to assess the compatibility of the component
being updated and whether this update leads to breaking
changes. Such fine-grained analyses are very valuable, but
can be time-consuming and remain restricted to a partic-
ular programming language. They do not scale up to the
ecosystem-level, because of the massive amount of packages
and package dependencies, and because of the large amount
of packages that get updated every day. Therefore, we
propose a complementary approach that relies on package
dependency metadata only. Such a coarse-grained analysis
is language-independent and scalable to the size of con-
temporary packaging ecosystems. On the downside, it is
less precise, because it only assesses the perceived backward
compatibility on the basis of the semantic versioning policy.

4 METHODOLOGY AND TERMINOLOGY

4.1 Terminology

This section presents the terminology that will be used in
this paper. All main terms are highlighted in boldface.

Software packaging ecosystems are collections of soft-
ware packages, each of which can have one or more pack-
age releases that are determined by a unique version num-
ber. We assume all version numbers to be of the form x.y.z
(where all three version components are positive integers).
Package releases with a version number in the [1.0.0,+∞[
version range are called production releases3 while package
releases with a version number in the [0.0.0, 1.0.0[ version
range are called initial development releases.

Package releases can express dependencies on other
packages. If package release R depends on package P , R
is called a dependent, while P is called a required package.
P is said to have a reverse dependency to R. A dependency
can specify which releases of a required package are allowed
to be selected for installation by means of a dependency
constraint. Such constraints express a version range of
version numbers allowed by the dependency. For example,
constraint < 2.0.0 defines the version range [0.0.0, 2.0.0[,
signifying that any package release below version 2.0.0 is
allowed. Dependency constraints that target only initial de-
velopment releases will be called pre-1.0.0 constraints. The
complement (i.e., the right boundary of the version interval
is 1.0.0 or above) will be called post-1.0.0 constraints.

Dependency constraints allow maintainers of dependent
packages to benefit from the semver standard (detailed in
Section 2) as they allow to restrict the range of releases
of a required package to the ones that are expected to be
backward compatible. If a dependency constraint adheres to

3. From semver FAQ, “If your software is being used in production,
it should probably already be 1.0.0.” [6]

semver, we will call it compliant. Dependency constraints
may also be more permissive or more restrictive than what
semver dictates. How to interpret this however depends on
the version range expressed by the dependency constraint.

A post-1.0.0 constraint will be considered compliant
if the version range only includes all minor releases and
patches above the left boundary. It will be permissive if
the version range includes more versions than the ones
considered backward compatible by semver. It will be re-
strictive if the version range includes fewer versions than
the ones considered backward compatible by semver. For
example, version range [1.1.0, 2.0.0[ is compliant; version
range [1.1.0, 3.0.0[ is permissive since it encompasses re-
leases from multiple major versions (all releases with major
version number 2 would be accepted as well) ; and version
range [1.1.0, 1.2.0[ is restrictive since only patches to 1.1.0
will be included, but no higher minor versions.

For pre-1.0.0 constraints, the official semver standard
only considers strict constraints targeting a single version
(i.e., a singleton version range) to be compliant.4 In practice,
as we will see later, this is often considered as too restrictive.

semver considers pre-release versions (not to be con-
fused with initial development releases) corresponding
to alpha-releases, beta-releases or release candidates (e.g.,
2.1.3-alpha, 0.5.0-beta or 3.0.0-rc) to be “unstable and might
not satisfy the intended compatibility requirements as de-
noted by its associated normal version.” Because of this, and
because of the fact that developers are generally aware of the
fact pre-releases are meant to be unstable and are expected
to have breaking changes, 5 we will not consider pre-releases
in our analyses. This is in line with the way in which the
npm semantic versioner deals with pre-releases: “[...] pre-
release versions frequently are updated very quickly, and
contain many breaking changes that are (by the author’s
design) not yet fit for public consumption. Therefore, by
default, they are excluded from range matching semantics.”6

4.2 Selected packaging ecosystems

Open source packaging ecosystems exist for most of the
major contemporary programming languages. In this arti-
cle we focus on packaging ecosystems that are known to
recommend the use of semver, and that allow developers to
specify version constraints over their package dependencies.

To analyze these ecosystems, we rely on version 1.2.0
of the libraries.io Open Source Repository and Dependency
Metadata dataset [30]. While libraries.io contains historical
data of packages and their dependencies for many pack-
aging ecosystems, we excluded those that: do not host a
sufficiently large number of packages (e.g., Julia has fewer
than 3K packages); have an incomplete or inaccurate list of
dependencies (e.g., Maven or PyPI); are a subset of another
ecosystem (e.g., Bower is a subset of npm); target a specific
tool or framework (e.g., Meteor); have their own specific
versioning policy or do not support nor recommend semver

4. From semver specification, “Major version zero (0.y.z) is for initial
development. Anything may change at any time. The public API should
not be considered stable.” [6]

5. blog.npmjs.org/post/115305091285/introducing-the-npm-
semantic-version-calculator

6. docs.npmjs.com/misc/semver

blog.npmjs.org/post/115305091285/introducing-the-npm-semantic-version-calculator
blog.npmjs.org/post/115305091285/introducing-the-npm-semantic-version-calculator
docs.npmjs.com/misc/semver


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.X, NO.Y, DATE 5

(e.g., Go, Hackage, CPAN or CRAN). Based on these exclu-
sion criteria, we retained four packaging ecosystems: Cargo
for the Rust programming language, npm for JavaScript,
Packagist for PHP and Rubygems for Ruby.

Table 1 presents some characteristics of these packaging
ecosystems. We observe that some ecosystems are much
older than others. For all empirical analyses, packages and
dependencies from the entire history of each ecosystem
were considered. However, to facilitate cross-ecosystem
comparison, the figures in the paper present the observa-
tions for a 5-year time interval only, from 2013-01-01 to 2017-
12-31.

TABLE 1
Characteristics of the curated dataset (January 1, 2018).

Pkg. Eco. Creation Language #pkg #rel #dep
Cargo 2014 Rust 13K 73K 257K
npm 2010 JavaScript 630K 4,181K 19,030K
Packagist 2012 PHP 121K 798K 2,168K
Rubygems 2004 Ruby 141K 809K 1,923K

The four considered ecosystems do not necessarily agree
on the way they adhere to semver. A main variation point
is how they interpret semver-compliance for initial develop-
ment releases. Most package management tools implement
a variant of semver that is more permissive for initial devel-
opment releases. For example, Cargo, npm and Packagist
assume that patches for initial development releases will
not introduce breaking changes. Rubygems is even more
permissive and treats initial development releases in the
same way as production releases.

4.3 Data curation

For each selected packaging ecosystem, we consider all
its packages and all releases for these packages. For each
package release, we consider its list of dependencies. When
declaring dependencies, a package maintainer can specify
the purpose of the dependency (e.g., it is needed to execute,
develop or test the package). We excluded the dependencies
that are only needed to test or develop a package because
not all considered ecosystems make use of them, and not
every package declares a complete and reliable list of such
dependencies. We therefore consider only those dependen-
cies that are required to install and execute the package, and
hence more accurately reflect what is needed to actually
use the package. In the ecosystems we analyzed, these
dependencies are either labeled “runtime” or “normal”.

We only consider “internal” dependencies between
packages belonging to the ecosystem, i.e., we exclude all
dependencies targeting external sources that are/were not
available through the packaging ecosystem (e.g., packages
that are hosted directly on the web or on Git repositories).

As explained in Section 4.1 we exclude all pre-release
versions (e.g., 2.1.3-alpha, 0.5.0-beta or 3.0.0-rc) since they
are known to be unstable and not necessarily representative
of their associated normal version. They are of no interest
for our analysis, and including them would only bias the
results. Specifically for the npm ecosystem, we also excluded
around 52K “spam” packages. These packages were auto-
matically created by tools and developers abusing the npm

API to publish new packages. They are either “funny” pack-
ages depending on a very large number of other packages7

or replications/variations of existing packages.8 We did not
find such spam packages in the other three ecosystems.

Table 1 summarises the curated dataset, by reporting
the number of packages (#pkg), package releases (#rel),
and dependencies (#dep) that will be considered for our
analysis. A replication package of our analysis is available
on doi.org/10.5281/zenodo.2563141.

4.4 Constraint normalisation

In addition to the fact that different packaging ecosystems
implement different variants of semver, they tend to use
different syntactic notations for specifying dependency con-
straints, or may interpret the same notation in a different
way. For example, in Packagist and Rubygems the depen-
dency constraint 1.0 means that 1.0.0 is the only allowed
release; while for npm this constraint also allows all patch
releases (e.g. 1.0.1, 1.0.2, and so on); and Cargo is even more
tolerant since this constraint even accepts all minor releases.
Needless to say, this can lead to confusion for developers
that are involved in multiple packaging ecosystems.

TABLE 2
Examples of version constraints and their corresponding version range.

Constr. Cargo npm Packagist Rubygems
=1.0.0 [1.0.0] [1.0.0] [1.0.0] [1.0.0]

1.0.0 [1.0.0, 2.0.0[ [1.0.0] [1.0.0] [1.0.0]
1.0 [1.0.0, 2.0.0[ [1.0.0, 1.1.0[ [1.0.0] [1.0.0]

1 [1.0.0, 2.0.0[ [1.0.0, 2.0.0[ [1.0.0] [1.0.0]
∼1.2.3 [1.2.3, 1.3.0[ [1.2.3, 1.3.0[ [1.2.3, 1.3.0[ [1.2.3, 1.3.0[
∼1.2 [1.2.0, 1.3.0[ [1.2.0, 1.3.0[ [1.2.0, 2.0.0[ [1.2.0, 2.0.0[
∼1 [1.0.0, 2.0.0[ [1.0.0, 2.0.0[ [1.0.0, 2.0.0[ N/A

∧1.2.3 [1.2.3, 2.0.0[ [1.2.3, 2.0.0[ [1.2.3, 2.0.0[ N/A
>1.2.3 ]1.2.3, +∞[ ]1.2.3, +∞[ ]1.2.3, +∞[ ]1.2.3, +∞[
∼0.1.2 [0.1.2, 0.2.0[ [0.1.2, 0.2.0[ [0.1.2, 0.2.0[ [0.1.2, 0.2.0[
∧0.1.2 [0.1.2, 0.2.0[ [0.1.2, 0.2.0[ [0.1.2, 0.2.0[ N/A

Table 2 shows some typical examples of version ranges
corresponding to how specific version constraint notations
are interpreted in each of the considered packaging ecosys-
tems.9 The cell color indicates whether the version con-
straint is compliant (white cells), permissive (green cells) or
restrictive (red cells) w.r.t. the semver-standard. We observe
for example that the ∧ notation is semver-compliant for
production releases in all ecosystems (except Rubygems
where this notation does not exist). Similarly, the =x.y.z and
∼x.y.z notations are more restrictive for production releases
in all ecosystems, and the> notation is more permissive. For
initial development releases, the∼ and ∧ notations are more
permissive than semver.

Given the observed notational differences of dependency
constraints, we will work directly with version ranges in-
stead. The advantage of this approach is that the subse-
quent analysis in this paper will be agnostic of the specific
notation used by the different packaging ecosystems. We

7. e.g., npm-gen-all whose purpose is to “create a multitude of npm
projects that will depend on every npm package published”.

8. e.g., npmdoc-*, npmtest-*, *-cdn, etc. Most of them are no longer
available through npm.

9. Rubygems’ pessimistic operator ∼> is represented as ∼ in this
table.

doi.org/10.5281/zenodo.2563141
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only require a parser to convert dependency constraints into
version ranges. Based on the available documentation, we
wrote a parser for each of the four considered ecosystems.
These parsers were able to cope with the large majority of
dependency constraints. The average monthly proportion
of parsable constraints was 99.9% for Cargo, 97.8% for npm,
96.7% for Rubygems, and 91.0% for Packagist.

The lower value for Packagist is mostly due to con-
straints defined before 2015, where “only” 86.8% of them
could be parsed, while 95.5% of the constraints defined since
2015 could be parsed. We cannot explain this difference,
but believe it is related to the development of its package
manager, Composer, whose first alpha was released on
2013-07-03, and whose first final version was released on
2016-04-05.

5 HOW FREQUENT ARE PRE-1.0.0 CON-
STRAINTS?
semver considers initial development releases as unstable.
In addition to this, the considered ecosystems differ in
the way they interpret compliance for pre-1.0.0 constraints
targeting these releases. To determine whether we should
distinguish pre-1.0.0 constraints from post-1.0.0 constraints
in our analysis, we computed, for each month, the propor-
tion of pre-1.0.0 constraints in all releases newly distributed
during that month. The results are presented in Figure 1.
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Fig. 1. Monthly proportion of pre-1.0.0 constraints in newly distributed
releases.

This monthly proportion is very high for Cargo (72.7%
on average), and non-negligible for npm (33.8% on average),
Rubygems (15.5% on average) and Packagist (9.5% on aver-
age). The high proportion of pre-1.0.0 constraints in Cargo
can be explained by the higher proportion of initial devel-
opment releases in this (very) young package manager: on
January 2018, only 1,240 packages out of 13K have reached a
production release. We also observe a decreasing proportion
of pre-1.0.0 constraints in npm from April 2014 onwards.
This is a consequence of new npm policies to reduce the use
of initial development releases.10

We did not expect to see such a high proportion of pre-
1.0.0 constraints, as it implies that many package releases
depend on packages that are still in the initial development
phase. Because, according to semver, such packages are sup-
posed to be unstable, there is an increased risk of depending
on them.

10. See for instance github.com/npm/init-package-json/commit/
363a17bc31bf653bb9575105eea62fb4664ad04b or github.com/npm/
node-semver/issues/79.

To assess how many packages are affected by this phe-
nomenon, we computed the monthly proportion of pack-
ages required by a pre-1.0.0 constraint. The proportions are
even higher than what we observed in Figure 1, confirm-
ing that many packages in initial development phase are
already used by other packages. On average, the proportion
of required packages targeted by pre-1.0.0 is 80.8% for
Cargo, 51.6% for npm, 30.9% for Rubygems and 18.3% for
Packagist.

Findings. A majority of required packages in Cargo and
npm are still in an initial development phase. For these
two ecosystems, more than one third of the dependency
constraints are pre-1.0.0 constraints. For Rubygems and
Packagist, even if this proportion is lower, it still repre-
sent on average 15.5% and 9.5% of all constraints. It is
therefore important to distinguish between pre-1.0.0 and
post-1.0.0 constraints to analyze semver-compliance.

6 ARE PRE-1.0.0 CONSTRAINTS SEMVER-
COMPLIANT?
Dependency constraints represent to some extent the confi-
dence that the maintainer of a package has in its required
packages. By definition, a semver-compliant pre-1.0.0 con-
straint targets exactly one release, i.e., the version range only
captures a single version of the required package. Since it is
not possible to be more restrictive, a pre-1.0.0 constraint can
only be compliant or permissive.

A permissive constraint might indicate that minor or
patch releases of a required package are not expected to be
backward incompatible or it could also reflect that the main-
tainer of the dependent package prefers not to specify an
upper bound on the set of allowed releases and to manually
adapt its package for each backward incompatible release of
the required package. This is confirmed by anecdotal qual-
itative evidence [4]: “most interviewed developers adopted
a reactive strategy for most of their dependencies. They
wait to hear about problems from others (in advance, or
after things have broken): upstream developers contacting
them about breaking changes, failing tests after dependency
updates, or platform maintainers warning of changes that
would affect them”.

To study the degree to which pre-1.0.0 constraints adhere
to semver, we computed the monthly proportion of those
pre-1.0.0 dependency constraints that are either compliant or
permissive. These proportions are shown in Figure 2 relative
to the total number of pre-1.0.0 constraints defined in newly
distributed releases for each month.

We observe that most constraints are permissive, re-
gardless of the ecosystem, and this proportion increases
over time. For December 2017, the proportion of permissive
constraints is of 96.5%, 74.3%, 93.4% and 91.3% respectively
for Cargo, npm, Packagist and Rubygems.

Such high proportions are likely to be a consequence of
the specific interpretation of semver by these ecosystems for
initial development releases. Indeed, semver assumes that
patch releases should not be considered as backward com-
patible, while the four ecosystems are more permissive and
consider these releases as being compatible, as explained in
their respective documentation. It is therefore not surprising

github.com/npm/init-package-json/commit/363a17bc31bf653bb9575105eea62fb4664ad04b
github.com/npm/init-package-json/commit/363a17bc31bf653bb9575105eea62fb4664ad04b
github.com/npm/node-semver/issues/79
github.com/npm/node-semver/issues/79
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Fig. 2. Monthly proportion of pre-1.0.0 constraints that are compliant or permissive.

that a majority of constraints are more permissive than
semver.

The interpretation of semver for Rubygems is even more
permissive as it considers minor releases as being backward
compatible as well. Consequently, the only way to release
breaking changes in initial development releases is to pass
the 1.0.0 version barrier. Maintainers in Rubygems seem to
follow this more permissive policy: we identified that 51%
of the constraints allow minor releases as well, while this
proportion is less than 0.01% for Cargo and npm, and of
13.8% for Packagist.

Findings. A large majority of the pre-1.0.0 constraints are
not compliant with semver. They tend to follow a more
permissive ecosystem-specific interpretation of semver
for initial development releases.

7 ARE POST-1.0.0 CONSTRAINTS SEMVER-
COMPLIANT?
Having focused on pre-1.0.0 constraints in the previous
research question, we will now study semver-compliance
of post-1.0.0 constraints. By using a semver-compliant post-
1.0.0 constraint, the package maintainer trusts that the re-
quired package does not introduce backward incompatible
changes in non-major releases. A permissive constraint could
reflect that even major releases of a required package are not
expected to be backward incompatible. Using a restrictive
constraint might indicate that the package maintainer does
not trust the changes in its dependency or prefers to keep
full control over how to deal with these changes.

To study the degree of semver-compliance of post-1.0.0
constraints, we computed the monthly proportion of those
dependency constraints that are either compliant, permis-
sive or restrictive. Figure 3 illustrates that all considered
ecosystems become more compliant over time, and both
the proportions of permissive and restrictive constraints de-
crease over time. However, the degree of compliance is quite
different for each ecosystem. Considering the last month of
the observation period (December 2017), most constraints
are compliant in Cargo (96.1%), npm (80.6%) and Packagist
(73.7%). For Rubygems, this proportion is of 40.1%, slightly
beyond the proportion of permissive constraints (43.1%).

The non-negligible proportion of restrictive constraints
in npm (17.9%), Packagist (18.6%) and Rubygems (16.7%)
may indicate that many package maintainers do not trust
the changes in their dependencies as these restrictive con-
straints prevent the automatic adoption of minor releases.
We looked more specifically at these constraints, and found

that 82.7% of them in npm, 32.3% in Packagist and 51.7% in
Rubygems prevent the automatic adoption of patch releases
as well.

We observe that Cargo has an evolutionary behavior
that is quite different from the other packaging ecosystems,
with a very sudden change from almost 100% of permissive
constraints to almost 100% of compliant ones in early 2016.
This change can be explained by a new policy restricting
the use of (permissive) wildcard constraints. Since January
2016, Cargo prohibits the use of these constraints because
“a version requirement of * says ‘This will work with every
version ever,’ which is never going to be true. Libraries
should always specify the range that they do work with,
even if it’s something as general as ‘every 1.x.y version”’.11

Figure 3 also reveals that the degree of compliance for
npm starts to increase rapidly since early 2014. This trend
break coincides with the introduction by npm of the ∧ nota-
tion for expressing dependency constraints that are compli-
ant with semver, and the use of this notation as the default
one by npm tools. Similarly for Packagist, we observe a
migration from restrictive to compliant constraints starting
from mid 2014. This phenomenon could correspond to
several changes in Composer, the default package manager
of Packagist, that were intended to address co-installability
issues and to facilitate and greatly speed up the installation
of packages in the presence of non-strict constraints.

Rubygems differs from the other ecosystems in its higher
proportion of permissive constraints. This is due to the pres-
ence of many “optimistic” constraints12 that only specify a
lower bound on the versions that are required during instal-
lation. Finally, the peak that can be observed in Figure 3 for
Rubygems in August 2014 is the consequence of a massive
import of more than 25K package releases in Rubygems,
resulting in invalid release dates for these releases.

Findings. A large majority of post-1.0.0 constraints in
Cargo, npm and Packagist are compliant with semver,
and all considered ecosystems become more compliant
over time. The proportion of permissive and restrictive
constraints decreases over time. On December 2017, there
are still more than 16% of the constraints in npm, Packag-
ist and Rubygems that are restrictive and prevent minor
releases, and in many cases patch releases as well, from
being automatically adopted.

11. doc.rust-lang.org/cargo/faq.html
12. guides.rubygems.org/patterns/#pessimistic-version-constraint

doc.rust-lang.org/cargo/faq.html
guides.rubygems.org/patterns/#pessimistic-version-constraint
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Fig. 3. Monthly proportion of post-1.0.0 constraints that are compliant, permissive or restrictive.

8 WHEN ARE DEPENDENCY CONSTRAINTS
CHANGED?

Dependency constraints provide a way to allow the au-
tomatic adoption of new compatible releases of required
packages, while rejecting those that are likely to be incom-
patible. However, some package maintainers may prefer
to keep full control, and decide to adopt new releases of
required packages by manually updating the dependency
constraint so that it accepts these new releases. To quantify
this phenomenon, we measured the frequency of updating
dependency constraints. We found that, on average, con-
straints are updated every 6.9 releases in npm, 5.7 releases in
Packagist, 5.3 releases in Rubygems, and every 3.4 releases
in Cargo.

We expect more restrictive constraints to be updated
more often, reflecting the manual adoption of new compati-
ble releases of a required package. To verify this hypothesis,
we rely on the statistical technique of survival analysis
(a.k.a. event history analysis) [31]. This technique models
“time to event” data with the aim to estimate the survival
rate of a given population, i.e., the expected time duration
until the event of interest occurs (e.g., death of a biological
organism, failure of a mechanical component, recovery of
a disease). Survival analysis models take into account the
fact that some observed subjects may be “censored”, either
because they leave the study during the observation period,
or because the event of interest was not observed for them
during the observation period. A common non-parametric
statistic used to estimate survival function is the Kaplan-
Meier estimator [32].

The event being considered for this analysis is “the
dependency constraint is changed”. The survival analysis
reveals if the type of constraint being used (compliant,
permissive or restrictive) affects the time it takes (since the
introduction of the constraint) until the dependency con-
straint is changed. Figure 4 shows Kaplan-Meier survival
curves for the considered event. For the reasons explained
in Section 5, we distinguish between pre-1.0.0 and post-1.0.0
constraints.

With the notable exception of post-1.0.0 constraints in
Cargo, we observe that the more permissive are constraints,
the less frequently they are updated. This is valid for
pre-1.0.0 as well as post-1.0.0 constraints. For post-1.0.0
constraints in Cargo, however, permissive constraints are
updated more quickly than compliant ones. This is very
likely to be the consequence of the policy change in 2016
prohibiting the use of wildcard constraints, leading all de-

pendency constraints that were relying on this permissive
operator to be changed in a short period of time.

We carried out log-rank tests to compare whether sta-
tistically significant differences could be found between the
survival curves for the three types of constraints within each
ecosystem. We performed pairwise comparisons between
compliant, permissive and restrictive constraints, first for
pre-1.0.0 and then for post-1.0.0 constraints. The differences
were statistically confirmed at α = 0.05, i.e., the null
hypotheses H0 assuming that the survival curves are the
same were rejected with p-values < 0.05 (adjusted follow-
ing Bonferroni-Holm method to control family-wise error
rate [33]). This confirms a statistically significant difference
in the time required to change a constraint. Only for Cargo,
we were not able to reject H0 when comparing permissive
and restrictive post-1.0.0 constraints (p-value = 0.64).

With again the exception of permissive constraints in
Cargo, we also observe from Figure 4 that pre-1.0.0 con-
straints are more often updated than their post-1.0.0 coun-
terparts. A possible explanation is that packages in their
initial development phase are updated more often, causing
in turn their dependent packages to update more frequently.
We also believe that packages in the initial development
phase are less concerned with API stability than packages
in production. We performed a survival analysis of the
event “release is updated” for both initial development
and production releases, and confirmed through log-rank
tests that initial development releases are indeed updated
more often than production releases for npm, Packagist and
Rubygems (α = 0.05).

Findings. Dependency constraints remain unchanged
during 3.4 to 6.9 releases on average, depending on the
ecosystem. The more permissive a constraint is, the less
often it is updated. Pre-1.0.0 constraints are more often
updated than post-1.0.0 constraints.

9 TO WHAT EXTENT DO PACKAGES FOLLOW SE-
MANTIC VERSIONING?
If a package is known to respect the semver policy, then we
expect most of its dependents to use compliant constraints,
since the maintainers of such dependent packages face little
or no risk of breaking changes. If a package is known
to disobey the semver policy, then we expect dependent
packages to use either permissive or restrictive constraints
depending on whether their maintainer follows an opti-
mistic or pessimistic versioning strategy, and depending
on how frequently the required package is updated. The
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dependencies, based on monthly snapshots of the package dependency network.

TABLE 3
Concrete examples of specialization analysis for some frequently used packages, and suggested recommendation for package maintainers

desiring to depend on these packages.

package ecosystem dependents compliant permissive restrictive decision
serde Cargo 592 575 (97.1%) 0 17 adhere to semantic versioning

mage2pro/core Packagist 51 1 50 (98.0%) 0 set permissive dependency constraint
react-scripts npm 57 1 0 56 (98.2%) impose restrictive dependency constraint

rails Rubygems 997 288 506 203 undecided
rest-client Rubygems 387 173 137 77 undecided

pessimistic strategy avoids breaking changes by preventing
newer minor releases or patches from being used. It should
be followed if the required package regularly introduces
breaking changes in such minor or patch releases. The opti-
mistic strategy corresponds to a reactive approach where the
package maintainer allows for new releases of dependent
packages, even if they may cause breaking changes. If this
happens, the maintainer of the dependent package will have
to address the problem. Anecdotal evidence, gathered from
a survey over 2,000 developers in 18 ecosystems [9] appears
to confirm the use of the optimistic strategy: developers
report that breaking changes are fairly infrequent, and that
developers only take action when they notice that some-
thing breaks because of a change in a dependency.

In what follows, we adopt the assumption that package
maintainers generally know what they are doing when
defining dependency constraints (even though there may
be exceptions), hence it is unlikely that the majority of them
would be doing it wrong at the same time. Based on the
above reasoning, we hypothesise that, if many dependents
of the same required package use compliant constraints, it is
likely that this package respects the semver policy. A similar
reasoning could be made for permissive and restrictive
constraints.

As anecdotal evidence of this hypothesis, let us consider

the cases of underscore and lodash. Both packages are dis-
tributed on npm and provide similar features. While lodash
claims to follow semver, underscore is known not to have
respected semver in the past,13 notably in versions 1.7.0 and
1.8.0, respectively released in August 2014 and February
2015. An analysis of dependency constraints in the last
snapshot of npm indicates that while 80.4% of constraints
targeting lodash are compliant with semver, only 46.2%
of those targeting underscore are. The latter proportion is
barely higher than the proportion of restrictive constraints
(41.7%). As such, based on the “wisdom of the crowds”
principle, new packages desiring to depend on underscore
can assume that it is more safe to use restrictive constraints,
while for lodash they can use compliant constraints.

Relying on a commonly used threshold in statistical
analysis, we consider the reverse dependencies of a required
package to be “in agreement” if “at least 95%” of them use
the same type of constraint (i.e., compliant, permissive or
restrictive). In those cases, we will call the required package
“specialized”.

We computed monthly snapshots of each package de-
pendency network and, for each snapshot, we computed
the proportion of such “specialized” required packages by

13. See, e.g., github.com/jashkenas/underscore/issues/1684

github.com/jashkenas/underscore/issues/1684
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taking into account the dependencies specified in the latest
available release of each package. Knowing that the inter-
pretation of semver for initial development releases differs
from one ecosystem to another (see Section 4.2), we consider
post-1.0.0 constraints only for this analysis. To prevent the
analysis from being biased by packages that are no longer
maintained, we removed from each snapshot packages that
were not updated during the last 365 days. We also excluded
required packages with less than two reverse dependencies
as it makes little sense to consider a “specialization” on the
basis of one constraint only.

The results are visualised in Figure 5 using a “stacked”
line plot: the proportion of required packages that are spe-
cialized towards compliant, permissive or restrictive con-
straints (shown in different colors) are added up so that the
total proportion of specialized required packages becomes
immediately apparent. We observe that most required pack-
ages in Cargo, npm and Packagist are specialized, and that
their proportion increases over time. On December 2017,
we found 82.9% of such specialized packages in Cargo,
62.3% in npm and 64.1% in Packagist. The majority of these
packages are specialized towards being compliant (94% of
the specialized packages in Cargo, 86% in npm and 74.5% in
Packagist).

The situation is quite different for Rubygems where the
proportion of specialized required packages decreases over
time, and is much lower than in the three other ecosystems
(41.8% in December 2017). Moreover, the specialized pack-
ages in Rubygems are mainly specialized towards being
permissive (56.5% of the specialized packages), and only to
a much lesser extent towards being compliant (32%). These
observed lower proportions for Rubygems are a direct con-
sequence of the lower proportion of compliant constraints
and the higher proportion of permissive ones that were
reported in Section 7.

Specialized packages can be used to recommend depen-
dency constraints. Knowing whether or not a required pack-
age is specialized, and towards which constraint type it is
specialized, can be useful to package maintainers desiring to
depend on it. Based on the wisdom of the crowds, they can
decide whether or not they should specify dependency con-
straints in a similar way as other dependents of the required
package. We illustrate this on the basis of some concrete
examples of popular packages in different ecosystems, listed
in Table 3. For some packages, the large majority of their
dependents agree on the type of dependency constraint,
implying that it is probably safe to set the same type of
constraint in one’s own package. This is the case for the first
three listed packages.

In some cases it is more difficult to make a decision,
because no majority consensus is reached. Hence it is up to
each package maintainer to decide what is most appropri-
ate to do. For the Rubygems rails case, the indecisiveness
appears to be related to the fact that rails relies on a variant
of the semver policy that allows minor releases to deprecate
and remove existing features.14

Verifying that a package follows semver requires check-
ing the compatibility between consecutive releases of this
package, a problem that is known to be undecidable in

14. see github.com/rails/rails/issues/9979
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Fig. 6. Results for the split validation process: boxplots showing the
distributions of the accuracy scores computed against recommended
constraint types for packages in the training set. Median values are
represented with a black square and mean values with a white square.

general. Indeed, “any nontrivial property that involves what
the program does (rather than a lexical or syntactic property
of the program itself) must be undecidable” [34, p. 403].
Even in practice, it is extremely difficult to assess that a
(declared compatible) version does not contain backward
incompatible changes, because the changes can be numer-
ous and intricate, and because it does not suffice to check
the compatibility of the API only. Only a complete semantic
analysis of the underlying code can ascertain its compatibil-
ity. This implies that the accuracy of our approach cannot
be assessed based on “ground truth”. Instead, we rely on
a split validation process, a sampling approach to assess a
model’s performance, notably used in offline validations of
recommender systems [35].

The split validation process consists of dividing the
dataset into two parts: a training set consisting of obser-
vations up to a given date, and a test set consisting of subse-
quent observations that are validated against the model. For
the training set we selected all specialized packages from
the 2017-01-01 snapshot of each ecosystem. Each package
in this training set defines a recommended constraint type,
according to its specialization. The test set contains all new
dependency constraints defined towards these specialized
packages during 2017. The type of these constraints is
compared to the type of the recommended constraint. The
result of this comparison is used to compute the accuracy
score of the specialized package, as the proportion of those
new constraints whose type corresponds to the one that was
recommended. The scores are reported in Figure 6.

We observe that the accuracy scores are high, especially
for compliant constraints. The mean value (represented with
a white square) ranges between 0.75 and 0.97. The global
average score is 0.91 (respectively 0.94, 0.86 and 0.80 for
compliant, permissive and restrictive constraints). This indi-
cates that the “wisdom of the crowds” principle holds when
specialized packages are used to recommended dependency
constraints.

Findings. A majority of the required packages in Cargo,
npm and Packagist are specialized, and mostly towards
receiving semver-compliant dependencies. semver is less
followed in Rubygems, where specialized packages have
a tendency to receive more permissive dependencies. It
makes sense to rely on the wisdom of the crowds to
recommend dependency constraints.

github.com/rails/rails/issues/9979
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10 DISCUSSION AND FUTURE WORK

10.1 Dependency hell and co-installability issues

Regardless of whether a required package respects semver
or not, co-installability is an important factor to consider
when choosing an appropriate dependency management
strategy. Co-installability issues may arise when two dif-
ferent packages depend on different versions of another
package [19], a consequence of dependency constraints be-
ing too restrictive. Packaging ecosystems differ in how their
package manager allows to install packages, depending on
the implemented package installation strategy (e.g., global
vs. local environment, flat or vendored vs. nested installa-
tion, etc.). Cargo, npm and Packagist do not seem to suffer
(at least not directly) from such co-installability issues. For
example, for npm, if two different versions of a package
are needed by different dependencies, both versions will be
installed in their own folder and each package can depend
on the specific version it needs. However, the objects that
are created within these two different versions are not
necessarily compatible or interchangeable and could lead
to other issues (e.g., dependency conflicts [16]). Rubygems
packages, on the other hand, are exposed to co-installability
issues because gem, the default package manager, installs
packages at a system-wide level, and implicitly defines a
conflict between any two distinct releases of a same pack-
age. This could lead maintainers to avoid the use of tight
upper-bounded dependency constraints, thereby providing
a possible explanation of the observed higher proportion of
permissive constraints in Rubygems (cf. Figure 5).

semver presents itself as a way to alleviate the de-
pendency hell: it provides a way for maintainers to spec-
ify looser constraints while still limiting their exposure to
breaking changes. These loose constraints potentially accept
more releases of a required package, therefore limiting the
risk of conflicts. Being able to suggest to maintainers of
dependent packages when it is safe to rely on semver-
compliant constraints as opposed to more restrictive con-
straints is, indirectly, a (partial) solution to the dependency
hell.

10.2 Differences between packaging ecosystems

The wide range of syntactic and semantic differences in how
to specify dependency constraints in different ecosystems
(cf. Table 2) can be quite confusing to package maintainers,
especially if they contribute to multiple ecosystems. For this
reason, we recommend to introduce a common ecosystem-
independent notational convention for specifying depen-
dency constraints, and integrate this in (a new version of)
the semantic versioning specification.

Our empirical analysis revealed that the extent to which
semver is respected strongly depends on the considered
ecosystem. In addition to this, ecosystem-specific character-
istics and policy changes tend to have an important impact
on semver compliance. We list these for the four ecosystems
we analyzed.

Cargo, the youngest ecosystem, seems to have learned
lessons from the “best practices” and negative experiences
of other ecosystems. While Cargo has recommended the
use of semver since its very beginning, in the early days

its package maintainers continued to use permissive de-
pendency constraints. The decision of Cargo to remove
wildcard constraints in January 2016 led to an important
increase in semver-compliance.

In npm, the largest ecosystem we analyzed, package
maintainers initially tended to use the restrictive ∼ con-
straint which is not semver-compliant. Two important
changes in the ecosystem policy led to increased semver-
compliance. In early 2014, the ∧ constraint was introduced
and replaced ∼ as the default constraint. In April 2014, the
use of 1.0.0 as default package version was encouraged,
leading to a slight but continuous increase of the proportion
of production releases.

Packagist was found to have an evolutionary behavior
similar to npm, with a fairly high proportion of compliant
dependencies near the end of the observation period. The
progressive introduction of the Composer package manager
(from July 2013 to April 2016) lead to an increase of “cor-
rectly specified” (i.e., parseable) constraints, which probably
allowed maintainers to automatically identify issues with
their package dependencies. In mid 2014, several changes
were introduced in Composer to address co-installability
issues and to better support non-strict constraints and speed
up the package installation in presence of such constraints.
This coincided with an observed migration from restrictive
to compliant constraints.

Rubygems, the oldest considered ecosystems, was cre-
ated before the introduction of the semver specification.
About 39% of all Rubygems packages were created be-
fore semver 2.0.0 (compared to only 5.4% in npm, 4.4% in
Packagist, and 0% in Cargo). This perhaps explains why
Rubygems (in contrast to the other studied ecosystems)
lacks an explicit semver constraint operator (cf. Table 2),
why package maintainers may not consider semver as the de
facto versioning scheme for Rubygems, and why we found
such a low proportion of compliant constraints.

The same analysis could be replicated on other pack-
aging ecosystems that recommend semver, and the results
may differ to a small or big extent from the ecosystems
above. For example, the study by Raemakers et al. [15] of the
Maven packaging ecosystem revealed that many required
packages do not adhere to semver, in that they introduce
breaking changes during minor and patch releases. As a
consequence, many dependent packages prefer to specify
restrictive constraints. This is an important difference with
the four ecosystems we studied.

Given the important differences between ecosystems, it
would be useful for each ecosystem community to have a
very clear and documented policy of how to respect seman-
tic versioning, and of how this differs from other ecosys-
tems. In addition, migration guidelines should be provided
to help newcomers get accustomed to these policies, espe-
cially if they come from another ecosystem following other
rules and strategies.

10.3 The magic zero problem

When analysing semver-compliance for initial development
releases (i.e., 0.y.z), we found that packaging ecosystems are
generally more tolerant than what the semver specification
suggests. Indeed, most ecosystems assume that patches of
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initial development releases remain backward compatible.
This explains why we found a high proportion of pre-
1.0.0 dependency constraints that are more permissive than
semver (cf. Figure 2). Specifically for Cargo, we observed
that the majority of its packages are still in their “initial
development” phase, explaining the different behavior w.r.t.
the other analyzed ecosystems. How the semantic version-
ing specification deals with initial development releases has
been an active point of discussion, referred to as the magic
zero problem.15 Suggestions have been proposed to make
the semantic versioning less confusing w.r.t. 0.y.z versions.
Unfortunately, these suggestions have not been adopted yet.

10.4 Tool support

Tool support cannot be underemphasized for dependency
management. There are already quite a lot of depen-
dency monitoring tools available (e.g., GitLab’s integration
of Gemnasium [36], GitHub’s dependency analysis [37],
Tidelift [38] or Greenkeeper [39]). Some of these are, or can
be, integrated as part of continuous integration tools. These
monitoring tools allow package maintainers to be notified
when new releases of their dependencies become available.
Some tools help in automatically upgrading to such releases,
or to check that the new release does not introduce breaking
changes, by automatically executing test suites. For such
tools to be effective, package maintainers should provide
rigorous and complete test suites. Provided that complete
and reliable information is available about bugs and security
vulnerabilities in packages, tools could also suggest to adopt
specific releases that fix relevant bugs or security issues,
even when the imposed dependency constraint does not
allow it.

With respect to dependency constraints and seman-
tic versioning, however, more and better tool support is
needed. We are not aware of any tool that supports main-
tainers in choosing appropriate dependency constraints.
While there are tools that can be used to detect breaking
changes in reusable libraries (e.g., Clirr [40] and Revapi [41]
for Java, NDepend [42] for .NET), they primarily focus on
changes affecting their (public) API, and therefore cannot
report backward incompatibilities due to semantic changes
in the library source code. To the best of our knowledge,
most tools supporting semantic versioning are either tools
that automatically increment version components based on
a manually specified list of tagged changes (e.g., semantic-
release [43] or GitVersion [44]) or tools that compute the
set of versions that are accepted or rejected by a given
dependency constraint (e.g., npm semver calculator [45] or
Packagist Semver Checker [46]). The only known excep-
tion is Dependabot [47], a service that provides a semver
“compatibility score” for pairs of consecutive releases. The
score is based on the proportion of (a subset of) dependent
projects whose test suite did not fail when executed with
the new version of the dependency. The tool’s accuracy
mainly depends on the set of selected dependents and on
the quality of their test suites.

The wisdom of the crowds principle presented in Sec-
tion 9 could be used to suggest to package maintainers

15. github.com/semver/semver/issues/221

which type of dependency constraint to use for depend-
ing on required packages. As a proof-of-concept, we im-
plemented an ecosystem-independent command-line proto-
type tool for such support, relying on the libraries.io API
for gathering historical package dependency information.
This prototype, available as part of our replication package,
accepts the name of a package and displays the proportion
of reverse dependency constraints that are compliant, per-
missive or restrictive on a monthly basis.

While functional, the very slow response time of the
API combined with the large size of the dependency graphs
makes the prototype tool too slow to be of practical use. The
observed performance problems could be overcome by inte-
grating ecosystem-specific support in existing dependency
monitoring tools that have fast access to the dependencies
and their dependency constraints for all package releases in
the ecosystem.

Continuous monitoring of changes in dependency con-
straints would also help detect when a new release of a
required package unexpectedly becomes backward incom-
patible. This would be the case if many dependents of this
required package have decided to update their dependency
constraints to exclude the new release or to select it as a new
minimal allowed version after having adopted it. Package
maintainers could also be informed about which release
of a required package is safest to use, by analyzing the
proportion of other packages that depend on each release,
and how this proportion evolves over time.

While most dependency monitoring tools focus on the
dependent package, there are also opportunities for sup-
porting maintainers of required packages. For example,
a historical dependency (constraint) analysis may inform
them how long it takes for specific releases of their packages
to be adopted by dependent packages, and to what extent
older releases of a package are still being used and why.
Such information will allow them to improve the adoption
rate of new package releases, and to decide whether to
backport bug and security fixes to previous major releases.

10.5 Future work

The presented empirical study followed a coarse-grained
analysis of semver-compliance in package dependency net-
works. Such a study could be complemented by finer-
grained in-depth analyses, that study the specific charac-
teristics and internal details of individual package releases,
and how they relate to semver-compliance. Examples of
potentially relevant package characteristics would be its
number of contributors, its code quality, the presence of
bugs, security issues and failed builds. In particular, it
would be very interesting to study to what extent semver-
compliance relates to software quality and technical debt.
Are packages with permissive dependency constraints more
subject to such quality issues than those with compliant or
restrictive constraints? How does the ecosystem play a role
in this?

A finer-grained analysis is also required to understand
why and how breaking changes manifest themselves, in
order to estimate the effort required to address them, for
individual packages as well as for entire package depen-
dency graphs. The main challenge is to come up with

github.com/semver/semver/issues/221
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solutions that can scale to huge dependency networks such
as the one of npm, containing millions of package releases
and dependencies, without even considering the transitive
dependency relationships. Another challenge is to find ef-
ficient analysis algorithms that can be applied over a wide
range of highly dynamic programming languages (such as
JavaScript, PHP, and Ruby, the main languages for three of
the four considered ecosystems).

While the current study focused only on internal depen-
dencies between packages contained within the ecosystem,
it may be interesting to expand the analysis beyond the
ecosystem boundaries, similar in spirit to Decan et al. [11].
On the one hand, we aim to study the types of constraints
that are used for outgoing dependencies from ecosystem
packages to external software that is not distributed via
the package manager. On the other hand, we would like to
study the constraints for incoming dependencies from exter-
nal software to ecosystem packages. Such dependencies are
likely to specify other types of constraints than the internal
packages, since the packaging ecosystem has little or no
control over the release policy of packages it does not host.

11 THREATS TO VALIDITY

We discuss the threats that may affect the validity of our
findings, following the structure recommended by Wohlin
et al. [48].

Threats to construct validity concern the relation between
the theory behind the experiment and the observed find-
ings. Our analyses were based on a preparatory parsing
step to convert ecosystem-specific constraint notations to
a generic version range notation. Since the large majority
of constraints could be parsed, this is unlikely to affect
our results. On the contrary, the extra parsing phase makes
our approach more generic, and hence easy to generalise
to other ecosystems. The accuracy of our findings assumes
that the package dependency metadata extracted from li-
braries.io is correct. We manually checked this assumption
in previous work [5] relying on the same dataset. Our
findings also depend on the “noise” that may be present
in the original data provided by the packaging ecosystems.
As explained in Section 4.3 for npm, we removed such noise
by excluding 52K “spam” packages that do not correspond
to real development. For Rubygems, the noise generated by
the massive import of over 25K package releases in August
2014 is unlikely to impact our findings as its effect affected
only one month of the considered 5-year observation period.

Threats to internal validity concern factors internal to the
study that could influence the results. The principal threat is
our assumption that dependency constraints can be used as
a proxy to assess if a maintainer trusts a required package
w.r.t. backward compatibility. We believe this assumption to
be correct, as dependency constraints are the common (and
only) way for maintainers of dependent packages to control
and limit their exposure to breaking changes in required
packages. Dependency constraints are especially useful to
control this exposure when semantic versioning (or another
versioning policy that dictates how version numbers should
be incremented w.r.t. backward compatibility) is expected to
be followed.

Threats to conclusion validity concern the relation be-
tween the treatment used in the experiments and the actual
observed outcomes. Given that our empirical analyses are
based on historical observations, they are not affected by
such threats.

The threats to external validity concern whether the re-
sults can be generalized outside the scope of the present
study. The proposed approach to assess the semver-
compliance of packages is certainly generalizable to other
packaging ecosystems since it is mainly observational and
based on the wisdom of the crowds principle. The use of
a generic version range notation as opposed to relying on
ecosystem-specific version contraint notations also makes
the approach applicable to other packaging ecosystems.
The observed findings themselves, however, are ecosystem-
specific, since they are highly dependent on the ecosystem’s
policies and practices. We already found important differ-
ences w.r.t. semver-compliance among the four packaging
ecosystems we analyzed, and we expect to see more such
differences in other ecosystems. Indeed, not every package
ecosystem uses dependency constraints in the same way. For
example, the “rolling release” policy of CRAN imposes that
a package must always be up-to-date with its dependencies.
Any dependency constraint that is not satisfied by the latest
available release of a dependency makes the package not
installable, even if the new release is compatible. As a
consequence, nearly all dependency constraints in CRAN
do not specify an upper bound [22] and hence, are not
meaningful to assess backward compatibility.

12 CONCLUSION

Maintainers of software packages in large package depen-
dency networks are frequently confronted with the “de-
pendency hell” of breaking changes because of backward
incompatible updates of (transitively) required packages. To
cope with this, they need to resort to tools and policies to
reduce the exposure to breaking changes while continuing
to be able to benefit from bug and security fixes. Semantic
versioning (semver) has been proposed as one of the ways
to do so.

We empirically studied the degree of semver-compliance
in four large packaging ecosystems (Cargo, npm, Packagist
and Rubygems), by analysing the dependency constraints in
their package dependency network over a five-year time pe-
riod, considering runtime dependencies only. Dependency
constraints were classified in three categories: those that
are compliant with the semver specification, those that
are more permissive and those that are more restrictive.
We generally observed that the proportion of compliant
constraints increases over time for all ecosystems, while
ecosystem-specific notations, characteristics, maturity and
policy changes play an important role in the degree of such
compliance. This aligns with the findings of Bogart et al.
[4], [9], who observed that different ecosystem communities
have different habits and values. For example, constraints
in Rubygems are more permissive than for the other ecosys-
tems, indicating that Rubygems does not adhere to the
semver specification.

In a similar vein we observed that ecosystems tend to
be more permissive than semver for packages during initial
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development (i.e., releases 0.y.z), since they assume patch
updates to be compliant, whereas the semver specification
does not. This is especially relevant for Cargo packages
that, because of Cargo’s young age, still rely a lot on
such initial development releases. For production packages
(i.e., releases 1.0.0 or above), the proportion of compliant
constraints is high (except for Rubygems) and increasing for
all ecosystems. Still, a significant proportion of dependency
constraints are too restrictive, preventing the automatic
adoption of minor releases and patches.

We assessed and confirmed that the “wisdom of the
crowds” principle can be used to allow to decide which
type of constraint to use for new dependencies to existing
required packages. If the large majority of dependencies to
a given required package “agree” on the constraint type
they use, this constraint type can be recommended for other
packages desiring to depend on the same required package.

These and related results can form the basis for a next
generation of semver-aware dependency management tools
that can be integrated into existing continuous integration
processes. As such, the difficult task for package maintainers
to keep their packages up to date will be alleviated.
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