
A Quantitative Assessment of
Package Freshness in Linux Distributions

Damien Legay
Software Engineering Lab

University of Mons
Mons, Belgium

damien.legay@umons.ac.be
ORCID 0000-0001-6811-6585

Alexandre Decan
Software Engineering Lab

University of Mons
Mons, Belgium

alexandre.decan@umons.ac.be
ORCID 0000-0002-5824-5823

Tom Mens
Software Engineering Lab

University of Mons
Mons, Belgium

tom.mens@umons.ac.be
ORCID 0000-0003-3636-5020

Abstract—Linux users expect fresh packages in the official
repositories of their distributions. Yet, due to philosophical
divergences, the packages available in various distributions do not
all have the same degree of freshness. Users therefore need to be
informed as to those differences. Through quantitative empirical
analyses, we assess and compare the freshness of 890 common
packages in six mainstream Linux distributions. We find that at
least one out of ten packages is outdated, but the proportion
of outdated packages varies greatly between these distributions.
Using the metrics of update delay and time lag, we find that
the majority of packages are using versions less than 3 months
behind the upstream in 5 of those 6 distributions. We contrast
the user perception of package freshness with our analyses and
order the considered distributions in terms of package freshness
to help Linux users in choosing a distribution that most fits their
needs and expectations.

I. INTRODUCTION

Since its inception in 1991, the Linux operating system
has continued to expand and evolve. Its kernel has grown
at a superlinear rate [1], [2]. Since Linux uses the very
permissive open source license GNU GPL, it has been forked
into a myriad of variants, called distributions. These dis-
tributions are often built around a package manager that
complements the Linux kernel with a plethora of third-party
software packages. Much of the functionality provided by
a distribution to its end-users comes from these third-party
packages. They are provided to users via distribution-specific
software repositories. As a result, Linux distributions form
software ecosystems in which packages interact in complex
relationships of dependency, co-installability [3], redundancy
and complementarity. As such, the versions of packages avail-
able in the official repositories (repositories that are enabled
by default) of different distributions may vary according to
the philosophy adopted by the creators and maintainers of the
distribution, as they take different approaches to nurturing the
health of their distributions.

Some maintainers place great emphasis on maximising the
stability of the distribution, to avoid the risk of introducing
changes that could potentially introduce package incompati-
bilities or break prior functionality. A distribution known to
markedly emphasise stability is the Stable branch of Debian.
Some maintainers put security concerns at the forefront,

aiming to make their distributions as resistant as possible to
nefarious acts. One such distribution is Qubes OS [4], which
minimises the potential impact of security vulnerabilities by
isolating software components as much as possible through
the use of virtual machines. Other maintainers, such as those
of Arch Linux, prioritise package freshness by endeavouring
to incorporate package updates as quickly as possible.

In prior work [5], we conducted a qualitative survey of 170
Linux users revealing that Linux users consider package fresh-
ness important, as package updates are a source of security
patches, bug fixes and new features. This is also attested by
the existence of package freshness monitoring services such as
Repology and DistroWatch. The survey also highlighted that
users tend to rely on their distributions’ official repositories to
install and update packages. Therefore, it is important for users
to be well-informed as to the relative freshness of the packages
in various Linux distributions. The survey examined the user
perception of package freshness in the official repositories
of the distributions, observing vast discrepancies between
distributions, from users of Arch expecting package updates
to be deployed within days, to users of Debian Stable and
CentOS deeming that it would take months. The survey also
established that whenever fresh versions of packages are not
available within the official repositories of the distribution,
users have to use other means of updating, which can be
detrimental to their system’s stability and security. Therefore,
in order to evaluate to which extent user perception matches
objective quantitative evidence and to enable them to make an
informed choice of distribution, we empirically measure and
compare the package freshness of six popular distributions:
Arch Linux, CentOS, Debian Stable, Debian Unstable, Fedora
and Ubuntu, over a period of 5 years. We do so by studying
three research questions for each distribution. RQ1: How
prevalent are outdated package versions in Linux distributions?
RQ2: How long have those package versions been outdated?
RQ3: To which extent are deployed packages outdated?

II. RELATED WORK

The notion of freshness has been studied in non-Linux
environments. Cox et al. [6] proposed system-level metrics to
quantify a software system’s dependency freshness, that is to



say how up-to-date the system’s dependencies are. Gonzalez-
Barahona et al. [7] introduced the concept of technical lag
as a measure of how outdated a system is with respect to its
dependencies. They defined the technical lag in terms of a
lag function and lag aggregation function for packages. This
notion was generalised further and used by Zerouali et al. [8].

Aspects of package co-installability and package depen-
dency in Linux have been well studied, particularly with
regards to Debian. Vouillon et al. [3], [9] and Claes et al. [10]
examined the co-installability problem as it applied to the
Debian ecosystem and how it could be solved. Similarly, Artho
et al. [11] proposed detection and prevention strategies for this
problem. Galindo et al. [12] characterised the relationships
between packages within Debian, proposing a language to
describe whether a package depends on another, has co-
installability issues with another or provides the same func-
tionality or a superset of the functionality of another. Nguyen
and Holt [13] studied the life cycle of Debian packages. They
compared the age of packages in Debian Stable, Unstable and
Testing, defining package age as the time delta between its
introduction into the distribution and its removal from Debian
or its update to a newer version.

There has been little focus on the freshness of packages in
Linux distributions. Gonzalez-Barahona et al. [14] observed
in 2009 that one out of eight packages within Debian Stable
(12%) was not updated at all during a nine-year timespan, from
Debian Stable 2.0 (released on 1998-07-24) to 4.0 (released
on 2007-04-08). The work most closely related to this paper
is a 2009 Bachelor’s thesis by Shawcroft [15] comparing the
freshness of packages in 8 Linux distributions (Arch Linux,
Debian, Gentoo, Fedora, OpenSUSE, Sabayon, Slackware and
Ubuntu). The thesis reports that around 20% of the packages
in Arch Linux are outdated and from 40% to 60% in the other
distributions, and that Debian and Slackware packages were,
on average, more obsolete than those of the other distributions.
Although his analysis concerns 8 Linux distributions, it only
covers 137 packages.

III. METHODOLOGY

This section presents the methodology for our empirical
study, for which a replication package is available on Zenodo1.

In order to study package freshness in Linux distributions,
we need to select a set of relevant distributions. According
to Distrowatch, there are 913 Linux distributions, 274 of
which are considered “active”. Not all distributions fall within
the scope of this study (e.g. Bicom System is a distribution
whose sole purpose is to serve as a telephony platform).
We focus on general-purpose GNU-based distributions, and
select Arch Linux, Debian, CentOS, Fedora and Ubuntu. These
distributions were found to be used by 81% of respondents in
our survey of Linux users [5].

These distributions have different release policies. Most
of them use point releases, in which a new version of the
distribution is released at regular intervals. Ubuntu has a fixed

1http://doi.org/10.5281/zenodo.4446468

release cycle with six-month intervals, releasing in April and
October. Fedora also releases two versions a year, but on a
looser schedule. CentOS is based on the source code of Red
Hat Entreprise Linux (RHEL). For example, CentOS 6.5 is
based on the fifth update of the sixth release of RHEL. Arch
Linux follows a rolling release policy, wherein packages are
constantly updated. There are therefore no explicit version
releases of Arch Linux. Debian includes several distributions.
Debian Stable is the officially recommended distribution. De-
bian Testing and Debian Unstable are development branches:
packages updates and new packages start in the Debian
Unstable rolling release and are continuously updated. When
a given package or update fulfils certain requirements, it is
moved to Debian Testing. Every 18 months, Testing is frozen,
only receiving critical fixes from Unstable. Six months later, a
new release is made: Testing becomes Stable and is unfrozen.
The previous Debian Stable becomes Debian Oldstable.

To conduct empirical analyses on the freshness of packages
in the selected distributions, we require data on the package
versions contained within them. We relied on the repositories
and archives of official distributions to obtain this data. For
distributions relying on point releases, we gathered data on the
package versions present in the distribution at the moment of
release. For distributions relying on rolling releases, we gath-
ered data on daily snapshots of the distributions. We focused
the analysis on a five-year observation period: [2015, 2020[.
We therefore selected the distribution releases corresponding
to that period. They are, respectively: Fedora 23 to 31, Ubuntu
15.04 to 19.10 and CentOS 7.1 to 7.7. We selected CentOS 7
over CentOS 8 for the analysis because CentOS 8 only had one
release during the observation period (8.0, released on 2019-
09-24). For Debian, we included Stable 8 to 10 and daily
snapshots of Unstable. We did not include Testing because, at
the moment of release, it is identical to Stable.

To be able to compare distributions, we needed to select
a set of packages that are common to all distributions, i.e.
packages that are present in at least one snapshot of each
distribution. Yet, different distributions might not adopt a
package under the same name. For example, Xephyr X-server
is available in Debian-derived distributions as the xserver-
xephyr package and as xorg-server-xephyr in Arch Linux.
To take into account these package name variations across
distributions, we established a mapping between the names
of packages in the selected distributions. As Arch Linux was
found to have the lowest number of packages (from ≈ 7k in
2015 to ≈ 10.5k by 2020), we mapped the names of packages
found in Arch Linux to those found in other distributions.
Manually looking at all possible pairs of distinct package
names would have been overly time-consuming (there are up
to 62k packages in recent releases of Ubuntu and Debian), we
thus first computed the normalised Levenshtein edit distance
between each pair of package names, only retaining as map-
ping candidates those whose distance was below 0.25 from
each other. The mapping candidates were then grouped into
sets of package names by agglomerative clustering. Finally,
we manually examined all remaining 6,639 sets of names

2

http://doi.org/10.5281/zenodo.4446468


to determine which of them actually correspond to the same
package. After this mapping process, we had identified 1,065
packages common to all our distributions.

The versioning schemes of 124 of those packages could not
be automatically compared between distributions. For instance,
the versions of package lua-socket are presented in the form
of version numbers in most distributions, but as dates in
Arch. With no available data source allowing us to determine
equivalence between versioning schemes, we had to exclude
these packages. To compare the versions of packages in the
distributions, we used libversion2, a library that takes into
account common versioning notation and keywords. For in-
stance, libversion would order the following version numbers
as such: 1.0rc1 < 1.0 < 1.0patch1 < 1.1. We finally
excluded 51 packages for which a single version appears in
all the selected distributions over the observation period, as it
is not meaningful to compare the freshness of such packages.
The final dataset contains 890 packages. As these packages
are common to the distributions, we avoid distribution-specific
packages and cover widely-used packages, including, for in-
stance gcc, zsh, nodejs and gimp.

Since we aim to measure the freshness of packages within
Linux distributions, we need to be able to determine when a
package version was released by its maintainers. We call this
the upstream release date, as opposed to the dates at which the
package version is deployed downstream into various Linux
distributions. Unfortunately, we found no aggregate source
of information on upstream release dates. Using the official
sites of the packages themselves is impractical, as these are
all formatted differently, potentially requiring a custom script
for each package to extract the data. As a result, we decided
to use the date of first appearance of package versions in
one of our selected distributions as a proxy for the upstream
release dates. We will somewhat abusively refer to the proxy
as upstream in the rest of this paper. Even though our analyses
focus on the period [2015, 2020[, we applied this procedure to
all package versions between 2010 and 2020. This allowed us
to approximate the upstream release date of package versions
that were already available prior to 2015-01-01.

IV. QUANTITATIVE ANALYSIS OF LINUX DISTRIBUTIONS

RQ1: How prevalent are outdated package versions in Linux
distributions?

This research question aims to assess the prevalence of out-
dated package versions within Linux distributions. A version
of a package in a distribution snapshot is outdated if a more
recent version is present in another distribution on the same
date. Fig. 1 shows the evolution of the proportion of outdated
package versions in the considered Linux distributions.

The proportion of outdated package versions in Arch Linux
is very low, oscillating between 5% and 17%. In contrast, 78%
to 87% of the package versions in CentOS 7 are outdated.
The proportion of outdated package versions in Debian Stable
is around 50%. The proportion in Debian Unstable fluctuates

2https://github.com/repology/libversion

2015
2016

2017
2018

2019
2020

0.0

0.2

0.4

0.6

0.8

1.0

Arch
D. Unstable

Fedora
Ubuntu

D. Stable
CentOS

Fig. 1. Evolution of the proportion of outdated package versions.

wildly between 18% and 50%, peaking every 2 years. Ac-
cording to the Debian maintainers, this is due to the adopted
release management policy: “When a Testing release becomes
‘frozen’, Unstable tends to partially freeze as well. This is
because developers are reluctant to upload radically new
software to Unstable, in case the frozen software in Testing
needs minor updates and to fix release critical bugs which
keep Testing from becoming Stable”.3 So, for a period of
six months occurring roughly every year and a half, package
versions in Debian Unstable become increasingly outdated,
converging towards Debian Stable. Nevertheless, even at the
points of the cycle when the fewest packages are outdated,
Debian Unstable is more similar to Fedora and Ubuntu than to
Arch Linux, which is unexpected for a distribution that serves
as a development branch, where one would expect to see recent
package versions being made available almost immediately in
order to expedite the testing and validation process. In the case
of Fedora, the proportion of outdated package versions hovers
around 30%, peaking at 35% for Fedora 27. The proportion in
Ubuntu has decreased over the past 5 years, starting at 44%
in Ubuntu 15.04 and reaching 35% by Ubuntu 19.10. These
observations suggest that not all distributions value keeping
packages up-to-date to the same extent. This is mostly seen by
contrasting Arch Linux with distributions that value concerns
of stability over freshness, such as Debian Stable and CentOS,
for which half to three-fourths of the packages are outdated.

Findings. The proportion of outdated package versions
varies greatly between Linux distributions, from ∼ 10% in
Arch Linux to ∼ 80% in CentOS. Despite being a devel-
opment distribution, a significant proportion of packages in
Debian Unstable are outdated.

RQ2: How long have the versions been outdated?

RQ1 established that some distributions use many outdated
package versions. However, some versions may have been
outdated for a very short time, while others have been outdated

3https://www.debian.org/doc/manuals/debian-
faq/ftparchives.en.html#frozen

3



for many years. For instance, kscreen is outdated in Ubuntu
19.10 by a single day. Indeed, Ubuntu 19.10 was released
on 2019-01-24 with kscreen 5.16.5, but version 5.17.0 was
already available on 2019-10-23. At the other end of the
spectrum, CentOS 7.6 shipped version 1.5 of package gzip
even though version 1.6 had already been available for more
than five years. It is therefore important to quantify the
time during which distribution maintainers did not seize the
opportunity to update. We thus measure for how long deployed
package versions in distributions have been outdated, i.e. the
time since a more recent upstream version has been available.
To do so, we define the metric of update delay of a package p
in a distribution as the time difference between the release date
of the distribution containing p and the upstream release date
of the first more recent version of p. If the distribution uses
the latest version of p, the update delay is 0. Fig. 2 shows,
in increments of 10%, the proportion of packages in each
distribution having at least a certain value of update delay
(in days) and in blue the evolution of the mean update delay
(in days) per distribution over the observation period.

We see major differences between distributions. On average,
packages in CentOS have been outdated by one order of
magnitude longer than those in the other distributions. The
opposite is observed for Arch Linux, which maintains a
mean update delay of less than 52 days. We see diverging
patterns between the Debian family of distributions (Debian
and Ubuntu) and the Red Hat family (Fedora and CentOS).
In the former case, the mean update delay grows relatively
little over time, whereas in the latter case, it accrues rapidly
over time. We observe a 87% increase in mean update delay
between Fedora 22 (70 days) and Fedora 31 (131 days).
Meanwhile, Ubuntu’s mean update delay trends horizontally,
allowing it to be lower than Fedora’s by the time of Ubuntu
19.04. The mean update delay in CentOS almost triples (factor
of 2.97) between CentOS 7.1 and CentOS 7.7, accruing a delay
of 761 days over a period of 1,631 days. For Debian Stable,
there is very little increase in mean update delay (16 days only)
between release 8 and release 10, even though those releases
are 1,533 days apart. The update delay of Debian Unstable
fluctuates as a consequence of the “partial freeze” effect prior
to Debian Stable releases, as observed in RQ1.

In Arch Linux, the few packages that are sometimes out-
dated never remain so for long: their update delay rarely
exceeds a few tens of days, indicating that maintainers quickly
react and update packages to newly available versions. Its
rolling release policy facilitates those quick reactions, as there
is no need to wait for the next release to update packages.
Few packages are outdated by more than 3 months in Fedora
and Ubuntu: 10% in Fedora and some releases of Ubuntu,
20% in most releases of Ubuntu. 30% of Debian Stable
packages use versions that have been outdated by 3 months or
more. Debian Unstable oscillates between update delays that
approach Debian Stable around the release of Debian Stable
and update delays similar to or even lower than Fedora at other
points of the Debian release cycle. CentOS stands in stark
contrast with all other distributions, with always over half of

its packages outdated by more than a year, and by more than 2
years by the time of CentOS 7.6. The discrepancy we observe
between CentOS and the other distributions is partly explained
by the fact that 41% of its packages have not been updated over
the course of the observation period, despite being outdated
from the first snapshot. In most distributions, this phenomenon
only concerns ≤ 2% of packages. For instance, version 0.15.1
of package aide was shipped in CentOS 7.7, despite the
availability of a more recent version 0.16 on 2013-12-18, 2099
days prior (i.e. nearly 6 years)! In any distribution, amongst
outdated package versions, at least 30% have an update delay
of more than half a year and at least 20% of more than a year.

Findings. There is a large discrepancy in update delay
between CentOS and other distributions: the mean update
delay of the first considered CentOS release is more than
thrice as high as the second distribution (Debian Stable) and
ten times as high as the lowest distribution (Arch Linux),
and the gap only widens with time. Most packages in most
distributions have a relatively low update delay, below 3
months. This is not the case for CentOS, where half the
packages have an update delay of more than a year. 20% of
outdated packages could have been updated for more than
a year in all considered distributions.

RQ3: To which extent are deployed packages outdated?

The update delay provided information regarding the time
since a package could have been updated to a prior version,
but has not been. While informative, this paints an incomplete
picture, as it does not measure the amplitude of the outdat-
edness. For instance, assume that version v1 of package p,
deployed in distribution d released on date x has an update
delay of 2 days. Depending on when v1 was released, p could
be missing 2 days’ worth of updates or years of updates. The
update delay tells us that version v2 was released on day x−2.
If v1 was released on day x−3, then d is only missing 2 days’
worth of updates, but if v1 was released on day x− 366, then
it is missing a full year’s worth of updates.

We will quantify the amplitude of outdatedness of package
versions in distributions compared to the upstream, by com-
puting the difference between the release date of the most
recent upstream version and the release date of the version
deployed in a distribution. This corresponds to the time lag
metric defined in the technical lag framework of Zerouali
et al. [8]. For example, Fedora 31 (released on 2019-10-29)
contains version 2.0.19 of package gob2. This version was
released upstream on 2013-05-07 while version 2.0.20 was
released on 2013-12-16. Thus, gob2 has a time lag of 223
days in Fedora 31. Fig. 3 shows, in increments of 10%, the
proportion of packages having this lower threshold of time lag
(in days) and in blue the evolution of the mean time lag (in
days) per distribution over the observation period.

The mean time lag does not exceed 200 days for most
distributions, with the exceptions of Debian Stable (rising to
205 days by Debian Stable 10), and CentOS that once again
starts more than an order of magnitude higher than Arch Linux

4



2015
2016

2017
2018

2019
2020

0
100

101

102

103

104

up
da

te
 d

el
ay

 (d
ay

s)

Arch

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104 D. Unstable

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104 Fedora

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104

up
da

te
 d

el
ay

 (d
ay

s)

Ubuntu

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104 D. Stable

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104 CentOS

0

20

40

60

80

100

pr
op

or
tio

n 
of

 p
ac

ka
ge

s

Fig. 2. Evolution (on logarithmic y-scale) of the update delay for each distribution. Mean update delay is shown in blue.

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104

tim
e 

la
g 

(d
ay

s)

Arch

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104 D. Unstable

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104 Fedora

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104

tim
e 

la
g 

(d
ay

s)

Ubuntu

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104 D. Stable

2015
2016

2017
2018

2019
2020

0
100

101

102

103

104 CentOS

0

20

40

60

80

100

pr
op

or
tio

n 
of

 p
ac

ka
ge

s

Fig. 3. Evolution (on logarithmic y-scale) of the time lag for each distribution. Mean update delay is shown in blue.

(427 versus 28 days) and climbs to over 3 years (1,252 days)
by CentOS 7.7, more than 6 times higher than the time lag
of Debian Stable. For the most part, most package versions
in distributions are less than 3 months older than the latest
available version: 50% in Debian Stable, 60% in Ubuntu and
Debian Unstable, 70% in Fedora and 90% in Arch Linux. In
Fedora, fewer than 20% of packages have a time lag of over
6 months. In Ubuntu, fewer than 30% do. Even in Debian
Stable, more than 60% (Debian Stable 8) to 70% (Debian
Stable 9 and 10) of packages are using versions less than 6
months old. As prior, Debian Unstable fluctuates according to
the Debian release cycle. CentOS is again the exception: half
of its packages are outdated by more than a year and a further
10% by more than 6 months in CentOS 7.1. By the time of
CentOS 7.7, more than 70% are outdated by more than a year
and more than 30% by more than 5 years! Considering only
the outdated packages in any distribution, at least half of them
have a time lag of more than six months, and 30% of > 1 year.

Findings. Distributions have an average time lag of roughly
half a year, with the exceptions of Arch Linux (hovering
around a month) and CentOS (from 1 to 3 years), at opposite
ends of the spectrum. The majority of package versions in
5 out of 6 distributions are less than 3 months older than
the latest available version. At least 30% of the outdated
packages are missing more than a year of updates.

The metrics of update delay and time lag are complemen-

tary, capturing different facets of outdatedness. Two packages
can therefore have the same update delay but a very different
time lag. For example, packages exempi and enchant in
Debian Stable 9 both have similar update delays (133 and
127 days, respectively), but a very different time lag (12 days
and 2454 days, respectively). Conversely, packages xdg-user-
dirs and libmpc in CentOS 7.5 both have a time lag of 1722
days, but a very different update delay (246 days and 1564
days, respectively). A high time lag is understandable if the
update delay is small, as the distribution maintainers have
not had much time to incorporate the new version(s). A high
update delay coupled with a low time lag can indicate that
the distribution maintainers deliberately skipped a version that
introduced an undesired change. Whereas if both metrics are
high, the distribution might be lacking important bug fixes or
features. At the distribution level, the observations we made
are consistent across both metrics.

Lessons learned. At package level, update delay and
time lag capture different facets of package outdatedness.
Nevertheless, at the level of Linux distributions, both met-
rics are consistent, since the metrics only show important
differences for a minority of packages.

V. DISCUSSION

A. Importance and impact of package freshness
A survey of Linux users [5] revealed that 75% of them value

package freshness and that this is more prevalent for users of

5



cutting edge distributions like Arch Linux and Fedora than
users of reputedly stable distributions like Debian Stable and
CentOS. Installing outdated packages exposes their users to
the risk of known security vulnerabilities (unless the security
patches have been backported) and users miss out on both bug
fixes and new features. Using an outdated version of package
p1 may also prevent the adoption of new versions of package
p2 that depend on a fresher version of p1. The aforementioned
survey also revealed that users are inclined to update packages
through the official repositories whenever possible. This can
be explained by the fact that using official repositories comes
with the benefit of knowing that the packages have been tested
for bugs, co-installability with other packages, dependency
requirements and security vulnerabilities and that the user
will be notified when future versions are deployed. Yet,
packages are not always fresh in the official repositories of the
distributions. Even in distributions that prioritise freshness, one
can find outdated packages. For instance, Arch Linux shipped
version 4.4.2 of package findutils until 2016-02-27, despite
more recent versions being available since at least 2011-11-08
(version 4.5.9, present in Fedora 16). This can have several
causes, such as the maintainers being reluctant to update to a
version that causes excessive breaking changes or incompati-
bility of the package with other components of the distribution.
Whenever a package is not fresh in (or absent from) the official
repositories, other means may be used to install the required
package version, such as using community repositories (e.g.
PPAs for Ubuntu, RPM Fusion for Fedora), third-party
package managers (e.g. Flatpak, Snappy) or precompiled
binaries. The survey confirmed that, for instance, 39% of users
resort to binaries to update proprietary software and more than
a third use community repositories to install both open-source
and proprietary software. In using these means, users do not
profit from the benefits of official repositories. Some, such as
installing binaries directly, even carry a risk that the package is
malware. It is therefore important that packages in the official
repositories be fresh.

B. Ranking distributions in order of freshness

Given the above, we propose to rank distributions in terms
of freshness, thereby informing user choice. To do so, we look
at the packages found in a snapshot of each distribution and
rank distributions based on the freshness of these packages:
the distribution with the highest freshness for a given package
receives a position of 1, the one with the lowest freshness a
position of 6). Ties are handled using standard competition
ranking.4 We use snapshots of the latest release of point-
release distributions. The snapshots used for Arch Linux and
Debian Unstable are those on the date of the last point-
release snapshot (Fedora). As a result, the snapshots used for
most distributions are within two weeks of each other, except
CentOS (1 month older) and Debian Stable (3 months older).

We computed the freshness rankings using both update
delay and time lag. Since we obtained similar results for both

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rankdata.html

1 2 3 4 5 6
rank

Arch

D. Unstable

Fedora

Ubuntu

D. Stable

CentOS

95% 96% 97% 99% 100% 100%

72% 75% 83% 93% 99% 100%

71% 76% 84% 91% 99% 100%

66% 70% 80% 94% 99% 100%

53% 56% 65% 75% 99% 100%

13% 15% 16% 24% 29% 100%

Fig. 4. Distribution of time lag rankings for packages in Linux distributions.

metrics, we only report the time lag ranking. Fig. 4 shows,
for each distribution, the proportion of packages with regards
to their time lag rank. The numbers shown are cumulative, so
a column n shows the proportion of packages ranked from
position 1 to n. For example, the 76% value for Fedora in the
rank 2 column means that 76% of its packages have a rank
2 or lower. Since 71% of its packages have a rank of 1, that
means 5% have a rank of 2. Five out of six distributions place
first more often than not. This is explained by the fact that
from 49% (Debian Stable) to 93% (Arch Linux) of packages
in the selected snapshot of those distributions are up-to-date,
therefore it is expected that many of these packages will tie for
first (time lag of 0). Arch Linux emerges as the clear winner,
its packages very rarely being ranked anything but first. Then
comes a peloton of 3 distributions: Fedora, Debian Unstable
and Ubuntu, ranked first roughly two-thirds of the time. Debian
Stable stands slightly back; its packages are ranked first more
than half the time (53%) but lagging behind the packages in
the four prior distributions a fourth of the time (25%). CentOS
is far behind, its packages being ranked sixth 71% of the time,
which is consistent with the results obtained in prior analyses.

To verify whether there is a significant statistical difference
between distributions, we compared the distribution of time
lag values between each pair of Linux distributions with a
two-sided Mann-Whitney U test [16]. For most pairs of Linux
distributions, we could reject the hypothesis that the statistical
distributions of lag values are identical with statistical signif-
icance (p < 0.01 after Holm-Bonferroni correction [17]), but
could not do so for Ubuntu and Fedora, Ubuntu and Debian
Unstable and Fedora and Debian Unstable. We measured the
effect size of the difference in time lag between distributions
with Cliff’s delta d [18]. Fig. 5 reports the results in a Hasse
diagram. An edge from a distribution D1 to D2 indicates
that D1 has fresher packages than D2, the reported value
is the effect size. All effect sizes are small (and medium
for Arch → Ubuntu) following the interpretation of Vargha
and Delaney [19]. An order of the relative package freshness
of distributions can be inferred, with Arch Linux being the
most fresh, followed by the trio Fedora, Ubuntu and Debian
Unstable, then Debian Stable, and finally CentOS. Although
Debian Unstable comes second with regards to overall package

6



Arch

D. Unstable

Fedora

Ubuntu

D. Stable CentOS

0.24

0.29
0.24

0.14

0.18
0.13

0.13

Fig. 5. Order of Linux distributions based on statistical comparison of the
time lag of their packages

freshness, it fluctuates appreciably in accordance with the
release cycle of Debian Stable.

Recommendation. Users that place primordial importance
on package freshness should default to Arch Linux. As a
compromise between package freshness and other factors
(such as ease of use or total number of packages), we
recommend using Fedora or Ubuntu.

C. Comparing Linux user perceptions with quantitative data

According to our survey [5], Arch Linux users perceived it
took on the order of days for upstream versions of packages to
be released in the Arch Linux repositories. We quantitatively
confirm that these user perceptions match reality for the
majority of packages, as the time lag of 90% of packages
rarely exceeds ten days. Still, a handful of packages have a
significant time lag. For instance, version 1.2.3 of package
cdrdao (available since 2010-05-25) is present in Arch Linux
until 2018-11-13, even though version 1.2.4 had been available
since 2018-07-22, resulting in a time lag of 2980 days (over
8 years). Fedora and Ubuntu users deemed that it took on the
order of weeks. This perception is mostly accurate, as 60% of
packages have a time lag of less than a month in all releases of
Fedora and all but 3 releases of Ubuntu (15.04, 15.10, 17.10).
Debian Stable and CentOS users considered that it took on
the order of months for upstream package versions to reach
the downstream official repositories of their distribution. For
Debian Stable, that perception is essentially correct: only 30%
to 40% of packages have a time lag higher than six months.
By contrast, in the case of CentOS, it is more appropriate to
talk in years as half of its packages have been outdated by
over a year in all considered releases.

Lesson learned. The user perception of the time it takes for
packages to be deployed within their distribution roughly
approximates reality, with the exception of CentOS users
who largely underestimate this time.

VI. THREATS TO VALIDITY

We discuss the threats to the validity of our findings,
following the structure established in [20].

Construct validity concerns the appropriateness of using
the findings of the experiments undertaken in a study to
make inferences, i.e. do the experiments measure what they
are supposed to. The principal construct validity threats are
related to the use of a proxy (see III) to approximate the

upstream release date of package versions. We did so due
to the lack of complete and centralised sources on package
version history. As a result, the release date we consider does
not reflect the date when this version was released by the
package authors, but the date when this version was first
witnessed in one of our distributions. Versions which do not
appear in any of the six distributions are not part of the
proxy, and those that do appear are assigned a release date
that is likely posterior to their actual release date. As such,
we potentially underestimated the true update delay, time lag
and proportion of outdated packages in the distributions. As
we are principally concerned with comparing the freshness of
Linux distributions, underestimating these values is not really
an issue, as it applies to all distributions studied.

Additionally, we used snapshots of point-release distribu-
tions at the time a new release is made. This does not consider
the evolution of the distribution, such as updates to packages in
the repository of a distribution made in between two releases.
Therefore, for point-release distributions, we only present
interpolations of the behaviour between snapshots.

Internal validity concerns the impact of the choices made
in carrying out a study on its results. The use of a proxy
can make lag appear more sudden than it really is: a new
release of one distribution will make a set of packages of
other distributions appear suddenly out of date, when in fact
those packages did not all release new versions on the same
date. This effect corrects itself whenever those packages are
updated. This effect is especially apparent in distributions with
a rolling release policy, for which we chose to use daily
snapshots. For instance, in Fig. 1 we observed that the release
of Ubuntu 17.10 on 2017-04-13 caused some packages in Arch
Linux to suddenly appear outdated, but this small spike was
short-lived as those packages were updated a few days later
in Arch Linux. For that reason, we restrained from making
observations on local events happening over a few days.

Conclusion validity concerns the reasonableness of the
conclusions derived from a study. There exist two categories of
threats to conclusion validity: (a) not detecting a relationship
that exist and (b) detecting relationships where there are none.
In both cases, the statistical power of the analyses carried
out plays an important role. A potential threat to conclusion
validity comes from the relatively small size of our final
dataset of 890 packages compared to the total number of
packages in some distributions. However, using Cochran’s
sample size formula, adjusted for a finite population as per
[21], our sample size of 890 is representative for even the
biggest set of packages in our distributions (∼ 62, 000, in
latter snapshots of Debian Stable and Debian Unstable) within
a margin of error of 4% at a confidence interval of 95%.

External validity concerns the generalisability of the con-
clusions of a study to a larger scope. A threat to external
validity lies in selecting only packages that are present in all
distributions. This biases the selection in favour of packages
that are widespread and generally established in the commu-
nity over more novel packages. As such, our findings are not
generalisable to all other packages. One could measure the

7



freshness of all packages in all distributions, and compare the
freshness of the distributions on this basis. However, such a
comparison would be unfair if the set of considered packages
is not the same for all distributions.

VII. CONCLUSION

Linux distributions rely on external packages to provide
their users functionalities that extend beyond those of the
Linux kernel. These packages are gathered in the distributions’
repositories. Yet, the package versions found in these repos-
itories are not always the latest available ones. A survey of
Linux users [5] reported that they value package freshness
in the official repositories of the distributions they use. In
order to allow users to make an informed choice, we therefore
assessed the freshness of packages in Linux distributions
using the complementary metrics of update delay and time
lag to measure how up-to-date packages deployed in Linux
distributions are compared to the available upstream releases.

We examined the proportion of outdated packages in six
Linux distributions, finding a large discrepancy between the
most up-to-date distribution (Arch Linux) and the most out-
dated one (CentOS), in terms of the number of outdated pack-
ages, update delay and time lag. As such, users of distributions
such as CentOS and, to a lesser extent, Debian Stable benefit
from new features and bug fixes after other Linux users and
might be exposed to known vulnerabilities for a longer period
of time. On the other hand, packages being deployed after
more extensive testing should better shield those users against
stability issues. From our analyses, Arch Linux emerges as
by far the most up-to-date distribution, followed by a trio
of distributions (Fedora, Ubuntu and Debian Unstable), then
by Debian Stable. CentOS is far behind the others. Most
packages in Arch Linux, Ubuntu and Fedora are up-to-date,
and those that are not are rarely outdated by more than a
single version. While Debian Unstable is sometimes as fresh
as Fedora and Ubuntu, this highly depends on the Debian
release management cycle. We therefore would recommend
to users who value having fresh packages to choose between
Arch Linux, Fedora and Ubuntu. Surveyed Linux users appear
to have an accurate idea of the time it takes to deploy package
updates within their distribution, with the exception of CentOS
users who underestimated that time.

Future work will focus on examining the trade-offs between
freshness, security and stability, and ranking distributions
according to an aggregate of these criteria. We also aim to
explore the impact of third-party package managers, such
as Flatpak, Snappy and AppImage on package freshness:
the existence of those package managers grants Linux users
another avenue to obtain packages, and therefore potentially
mitigate the potentially poor freshness of their chosen distribu-
tion. We will examine whether the packages in those package
managers are fresh and numerous enough to accomplish this
objective.

ACKNOWLEDGMENT

This research is supported by the Fonds de la Recherche
Scientifique – FNRS under Grants number O.0157.18F-
RG43 (Excellence of Science project SECO-ASSIST) and
T.0017.18.

REFERENCES

[1] Godfrey and Qiang Tu, “Evolution in open source software: a case
study,” in International Conference on Software Maintenance, Oct 2000,
pp. 131–142.

[2] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Herraiz,
“Evolution and growth in large libre software projects,” in International
Workshop on Principles of Software Evolution. IEEE, 2005, pp. 165–
174.

[3] J. Vouillon and R. Di Cosmo, “On software component co-installability,”
in Joint European Software Engineering Conference / Foundations of
Software Engineering, 2011, pp. 256–266.

[4] J. Rutkowska and R. Wojtczuk, “Qubes OS architecture,” Invisible
Things Lab, Tech. Rep. 54, 2010.

[5] D. Legay, A. Decan, and T. Mens, “On package freshness in linux
distributions,” in International Conference on Software Maintenance and
Evolution. IEEE Computer Society, oct 2020, pp. 682–686.

[6] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring depen-
dency freshness in software systems,” in International Conference on
Software Engineering. IEEE Press, 2015, pp. 109–118.

[7] J. M. Gonzalez-Barahona, P. Sherwood, G. Robles, and D. Izquierdo,
“Technical lag in software compilations: Measuring how outdated a
software deployment is,” in IFIP International Conference on Open
Source Systems. Springer, 2017, pp. 182–192.

[8] A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E. Constantinou,
and G. Robles, “A formal framework for measuring technical lag
in component repositories – and its application to npm,” Journal of
Software: Evolution and Process, vol. 31, no. 8, 2019.

[9] J. Vouillon and R. Di Cosmo, “Broken sets in software repository
evolution,” in International Conference on Software Engineering, 2013,
pp. 412–421.

[10] M. Claes, T. Mens, R. D. Cosmo, and J. Vouillon, “A historical analysis
of Debian package incompatibilities,” in Working Conference on Mining
Software Repositories, 2015, pp. 212–223.

[11] C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and S. Zacchiroli,
“Why do software packages conflict?” in Working Conference on Mining
Software Repositories, 2012, pp. 141–150.

[12] J. A. Galindo, D. Benavides, and S. Segura, “Debian packages repos-
itories as software product line models – towards automated analysis,”
in ACoTA, 2010, pp. 29–34.

[13] R. Nguyen and R. Holt, “Life and death of software packages: an
evolutionary study of Debian,” in Conference of the Center for Advanced
Studies on Collaborative Research, 2012, pp. 192–204.

[14] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, and
D. M. German, “Macro-level software evolution: a case study of a large
software compilation,” Empirical Software Engineering, vol. 14, no. 3,
pp. 262–285, 2009.

[15] S. Shawcroft, “Open source watershed: Studying the relationship
between Linux package and distribution releases,” Bachelor Thesis,
http://oswatershed.org, June 2009.

[16] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” Ann. Math.
Statist., vol. 18, no. 1, pp. 50–60, 03 1947.

[17] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian journal of statistics, pp. 65–70, 1979.

[18] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[19] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[21] G. D. Israel, “Determining sample size,” University of Florida, Institute
of Food and Agricultural Sciences, Tech. Rep. PEOD6, 1992.

8


	Introduction
	Related Work
	Methodology
	Quantitative Analysis of Linux distributions
	Discussion
	Importance and impact of package freshness
	Ranking distributions in order of freshness
	Comparing Linux user perceptions with quantitative data

	Threats to validity
	Conclusion
	References

