
How Magic Is Zero?
An Empirical Analysis of Initial Development Releases in Three Software Package Distributions

Alexandre Decan
Tom Mens

alexandre.decan@umons.ac.be
tom.mens@umons.ac.be

Software Engineering Lab, University of Mons
Mons, Belgium

ABSTRACT

Distributions of open source software packages dedicated
to specific programming languages facilitate software de-
velopment by allowing software projects to depend on the
functionality provided by such reusable packages. The health
of a software project can be affected by the maturity of the
packages on which it depends. The version numbers of the
used package releases provide an indication of their maturity.
Packages with a 0.y.z version number are commonly assumed
to be under initial development, implying that they are likely
to be less stable, and depending on them may be less healthy.

In this paper, we empirically study, for three open source
package distributions (Cargo, npm and Packagist) to which
extent 0.y.z package releases and ≥1.0.0 package releases be-
have differently. More specifically, we quantify the prevalence
of 0.y.z releases, we explore how long packages remain in the
initial development stage, we compare the update frequency
of 0.y.z and ≥1.0.0 package releases, we study how often
0.y.z releases are required by other packages, and we assess
whether semantic versioning is respected for dependencies
towards them. Among others, we observe that package distri-
butions are more permissive than what semantic versioning
dictates for 0.y.z releases, and that many of the 0.y.z releases
can be regarded as mature packages that are no longer under
initial development. As a consequence, the version number
does not provide a good indication of the health of a package
release.

CCS CONCEPTS

∙ Software and its engineering → Software libraries
and repositories; Reusability; Software evolution; Soft-
ware version control ; Maintaining software.

KEYWORDS

software package distribution, software reuse, software library,
version management, semantic versioning, software health

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
c○ 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7963-2/20/05.
https://doi.org/10.1145/3387940.3392205

ACM Reference Format:

Alexandre Decan and Tom Mens. 2020. How Magic Is Zero?:

An Empirical Analysis of Initial Development Releases in Three
Software Package Distributions. In IEEE/ACM 42nd International

Conference on Software Engineering Workshops (ICSEW’20),

May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3387940.3392205

1 INTRODUCTION

Open source software development embraces the principles of
software reuse, through the availability of software package
distributions dedicated to specific programming languages
(e.g., Cargo for Rust, npm for JavaScript, and Packagist for
PHP). As is the case for any software system, the reusable
packages in such distributions can have different levels of
maturity. In order for a mature software project to be con-
sidered healthy, it should avoid depending on unstable and
immature reusable packages that are still in their initial devel-
opment phase. A common convention for packages to reflect
this maturity in their version number major.minor.patch is
to set the major version component to 1 as soon as they
reach their first stable release. Packages that are under initial
development assign a version number 0.y.z to their releases,
conveying that the software is still incomplete and remains
work in progress. A 0.y.z version number can therefore be
seen as a signal to treat the package differently than ≥1.0.0
versions. If we assume that this convention is followed, it
would be advisable for ≥1.0.0 packages to not depend on
such 0.y.z packages, and for 0.y.z packages to quickly reach a
≥1.0.0 release in order to allow other packages to depend on
a stable and mature release.

Some versioning policies explicitly materialise these differ-
ences between 0.y.z and ≥1.0.0 versions. Consider for example
semver (semantic versioning) [15], a common versioning policy
in package distributions [1], dictating how version numbers
should be incremented w.r.t. backward compatibility. This
policy distinguishes 0.y.z from ≥1.0.0 versions in terms of
maturity, release cycle and stability. However, the specific
rules for 0.y.z versions are sometimes considered disruptive1

and counter-intuitive.2 The term magic zero reflects this
different semantics for 0.y.z versions. The confusion around
magic zero notably led the maintainers of npm to recommend
package developers to avoid using 0.y.z version numbers and

1https://github.com/semver/semver/issues/221
2https://github.com/npm/node-semver/issues/79

https://doi.org/10.1145/3387940.3392205
https://doi.org/10.1145/3387940.3392205
https://github.com/semver/semver/issues/221
https://github.com/npm/node-semver/issues/79

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Alexandre Decan and Tom Mens

start from version 1.0.0 “since the semver spec is weirdly
magical about 0.x.y versions, and we cannot ever hope to
get everyone to believe what the correct interpretation of 0.x
versions are.”3

The goal of this article is to assess quantitatively to what
extent package developers in different package distributions
take into account such differences in package releases. To
reach this goal, we study the following research questions in
Cargo, npm and Packagist, three package distributions that
are known to adhere to semver [7]:

𝑅𝑄1: How prevalent are 0.y.z packages? We observe in
all distributions that many packages did not yet reach
a ≥1.0.0 release.

𝑅𝑄2: How long does it take for a package to reach a
≥1.0.0 release? Only a small proportion of packages
traversed the 1.0.0 barrier, and one out of five took
more than one year to do so.

𝑅𝑄3: Are 0.y.z packages updated more frequently than
≥1.0.0 packages? A statistical difference could be ob-
served, but this difference was small to negligible in
each distribution.

𝑅𝑄4: Are 0.y.z package releases required by other pack-
ages? This was indeed observed as a frequent phenom-
enon for each package distribution.

𝑅𝑄5: How permissive are the dependency constraints to-
wards required 0.y.z packages? Most dependency con-
straints towards 0.y.z packages accept new patches,
making them more permissive than what semver rec-
ommends.4

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 introduces the re-
search methodology. Section 4 empirically studies the research
questions and presents the main findings. Section 5 presents
the threats to validity of the research. Section 6 discusses the
results and Section 7 concludes.

2 RELATED WORK

It is commonly accepted that the initial development stage
of software should be distinguished from its subsequent evo-
lution. This distinction is prominent in the staged software
life cycle model [17]: “During initial development, engineers
build the first functioning version of the software from scratch
to satisfy initial requirements.” This staged model has been
studied in the context of open source software projects by
Capiluppi et al. [3], who observed that “many FLOSS projects
could be argued to never have left this [initial development]
stage”. Fernandez et al. [10] observed that the software evolu-
tion laws apply well to open source projects having achieved
maturity. They confirm, however, that “many projects do
not pass the initial development stage.” Similarly, Costa et

3https://github.com/npm/init-package-json/commit/
363a17bc31bf653bb9575105eea62fb4664ad04b
4According to https://semver.org, “Major version zero (0.y.z) is for
initial development. Anything may change at any time. The public
API should not be considered stable.”

al. [5] observed that 44 out of 60 evolving academic soft-
ware projects (i.e., 73%) are either in initial development or
closedown stage.

The typical way to distinguish initial software development
releases from stable ones is by resorting to some kind of ver-
sioning scheme. For software libraries, the most common ap-
proach appears to be to use some variant of major.minor.patch
version numbers. The expressiveness of such a version num-
bering has been accused of being too limited [19]: “Especially
if component developers need to assign version numbers to
their components manually and do not have proper instruc-
tions that define which changes in what level of contract
conduct a new version, those version numbers at most rest
for marketing use and do not ensure compatibility between
different components.” The semver policy [15] was introduced
in an attempt to address such issues, and to provide a partial
solution to the “dependency hell” that developers face when
reusing software packages. It conveys a meaning to the ma-
jor.minor.patch version number, assuming that the reusable
package has a public API: “Bug fixes not affecting the API
increment the patch version, backwards compatible API addi-
tions/changes increment the minor version, and backwards
incompatible API changes increment the major version.”

The use of semver is quite common for package distri-
butions [1]. Wittern et al. [20] studied the evolution of a
subset of npm packages, analysing characteristics such as
their dependencies, update frequency, popularity, and ver-
sion numbering. They found that package maintainers adopt
numbering schemes that may not fully adhere to the seman-
tic versioning principle; and that a large number of package
maintainers are reluctant to ever release a version 1.0.0. Rae-
maekers et al. [16] investigated the semver-compliance in
22K Java libraries in Maven over a seven-year time period.
They found that breaking changes appear in one third of
all releases, including minor releases and patches, implying
that semver is not a common practice in Maven. Because of
this, many packages use strict dependency constraints and
package maintainers avoid upgrading to newer versions of de-
pendent packages. Decan et al. [8] studied the use of package
dependency constraints in npm, CRAN and RubyGems. They
observed that, while strict dependency constraints prevent
backward incompatibility issues, they also increase the risk
of having dependency conflicts, outdated dependencies and
missing important updates. Decan et al. [7] studied semver-
compliance in four evolving package distributions (Cargo,
npm, Packagist and RubyGems). They observed that these
distributions are becoming more semver-compliant over time,
and that ecosystem-specific notations, characteristics, matu-
rity and policy changes play an important role in the degree
of such compliance.

Bogart et al. [2] qualitatively compared npm, CRAN and
Eclipse, to understand the impact of community values, tools
and policies on breaking changes. They identified two main
types of mitigation strategies to reduce the exposure to
changes in dependencies: limiting the number of dependencies,
and depending only on “trusted packages”. They also found
that policies and practices may diverge when policies are

https://github.com/npm/init-package-json/commit/363a17bc31bf653bb9575105eea62fb4664ad04b
https://github.com/npm/init-package-json/commit/363a17bc31bf653bb9575105eea62fb4664ad04b
https://semver.org

How Magic Is Zero? ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

perceived to be misaligned with the community values and
the platform mechanisms. They confirmed this in a follow-up
qualitative study about values and practices in 18 software
ecosystems, on the basis of a survey involving more than
2,000 developers [1]. Different ecosystems were found to have
different priorities and make different value trade-offs. Their
results show that relationships between values and practices
are not always straightforward.

3 DATA EXTRACTION

In previous work we studied the use of semver in four package
distributions [7] and observed that three of these distributions
(Cargo, npm, Packagist) where mostly semver-compliant. We
also observed intriguing differences between how pre-1.0.0
and post-1.0.0 dependency constraints were being used. This
triggered us to conduct the current in-depth study on the
presence and use of 0.y.z package releases in these three
package distributions.

To analyze the considered package distributions, we rely
on version 1.4.0 of libraries.io Open Source Repository and
Dependency Metadata [13], released in December 2018. For
each package distribution, we consider all packages and all
their releases, except for the pre-release versions (such as
2.1.3-alpha, 0.5.0-beta or 3.0.0-rc) that are known to be
“unstable and might not satisfy the intended compatibility
requirements as denoted by its associated normal version” [15].
For each package release, we consider only dependencies to
other packages within the same distribution, i.e., we ignore
dependencies targeting external sources (e.g. websites or git
repositories). Since our focus is on how packages are actually
being used, we exclude the dependencies that are only needed
to test or develop the package, i.e., we only consider those
dependencies that are required to install and execute the
package. In the package distributions we analyzed, they are
either labeled “runtime” or “normal”.

To reduce noise in the dataset, we removed packages with
clearly deviating and undesirable behaviour. For Packagist we
excluded 21 of the most active packages (and their associated
1.2K releases) that were created and published to promote
illegal download services. For npm we excluded around 22K
packages (and their associated 50K releases) that were pur-
posefully created by malevolent developers abusing the API
of the npm package manager. These are either packages whose
main purpose is to depend on a very large number of other
packages (e.g., npm-gen-all) or replications and variations
of existing packages (e.g., npmdoc-*, npmtest-*, *-cdn, etc.)
Most of them are no longer available through npm.

Table 1: Characteristics of the curated dataset.

distrib. created language #pkg #rel #dep

Cargo 2014 Rust 21K 113K 433K

npm 2010 JavaScript 880K 5.979K 27.852K
Packagist 2012 PHP 141K 1.089K 3.079K

Table 1 summarises the curated dataset, reporting the
number of packages (#pkg), package releases (#rel), and
dependencies (#dep) that are considered for the empirical
analysis. The data and code to replicate the analysis are
available on https://doi.org/10.5281/zenodo.3693633.

4 RESEARCH QUESTIONS

4.1 How Prevalent Are 0.y.z Packages?

Since the results of our analysis are only relevant if a sufficient
number of packages in each distribution are still in their
initial development phase, we compute for each distribution,
on a monthly basis, the proportion of packages whose latest
available release is 0.y.z. Figure 1 shows the evolution of this
proportion relative to the number of packages distributed at
that time.

2013 2014 2015 2016 2017 2018
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

. o
f p

ac
ka

ge
s

Cargo NPM Packagist

Figure 1: Evolution of the proportion of packages
whose latest release is 0.y.z.

We observe a very high proportion of initial development
packages for Cargo (94% on average), which is likely related
to the young age of this package distribution. At the last
observation time (December 2018), 92.2% of its packages were
still 0.y.z packages. On the other side of the spectrum we find
Packagist, a much older package distribution, with 32% of 0.y.z
packages on average, and 29.3% at the last observation time.
For npm, we observe from April 2014 onwards a decreasing
proportion (from 85.5% to 45.7%) of 0.y.z packages. This is
a consequence of npm policies aiming to reduce the use of
0.y.z releases.5

A possible explanation for these high observed proportions
could be that many 0.y.z packages are no longer being main-
tained, preventing them from ever reaching a ≥1.0.0 release.
To verify this, we repeated the analysis by removing all pack-
ages that were not active during the last 12 observed months
(i.e., inactive in 2018). While this led to a decrease in the
proportion of 0.y.z packages, the decrease remained limited:
only 0.9% (= 92.2− 91.3) for Cargo, 5.7% (= 29.3− 23.6) for
Packagist, and 8.3% (= 45.7− 37.4) for npm.

Summary. The considered package distributions contain
many active 0.y.z packages: more than one out of five in
Packagist, more than one out of three in npm, and more
than nine out of ten in Cargo.

5See https://github.com/npm/node-semver/issues/79 and https://
github.com/npm/init-package-json/commit/363a17bc3

https://doi.org/10.5281/zenodo.3693633
https://github.com/npm/node-semver/issues/79
https://github.com/npm/init-package-json/commit/363a17bc3
https://github.com/npm/init-package-json/commit/363a17bc3

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Alexandre Decan and Tom Mens

4.2 How Long Does It Take to Reach
≥1.0.0?

If one assumes that 0.y.z packages are still in initial develop-
ment, then they are eventually expected to reach a ≥1.0.0
release reflecting their maturation. We study whether this
is indeed the case, and how long it takes in each considered
package distribution. To do so, we distinguish three cate-
gories: packages whose first distributed release was already
mature (≥1.0.0), packages that eventually crossed the 1.0.0
barrier, and packages remaining in their 0.y.z phase. Figure 2
shows the proportion of these categories for each package
distribution.

Cargo NPM Packagist
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

. o
f p

ac
ka

ge
s

4.2%

92.2%

3.6%

46.2%

45.5%

8.3%

61.6%

29.3%

9.1%

only >=1.0.0
only 0.y.z
both

Figure 2: Proportion of packages having only ≥1.0.0
releases, only 0.y.z releases, or both.

We observe that, regardless of the package distribution,
less than one out of ten packages went from a 0.y.z to a ≥1.0.0
release. This represents 738 packages in Cargo (3.6%), around
73K in npm (8.3%) and 13K packages in Packagist (9.1%).
While most Cargo packages (92.2%) only have 0.y.z releases,
the majority of Packagist packages (61.6%) only have ≥1.0.0
releases. For npm, there is a more or less equal proportion of
packages having only 0.y.z releases and packages having only
≥1.0.0 releases.

Focusing on packages that traversed the 1.0.0 barrier, we
computed the duration between their first 0.y.z release and
their first ≥1.0.0 release. Figure 3 presents the cumulative
proportion of packages having reached the 1.0.0 barrier in
function of the duration in time (left) and in terms of number
of intermediate releases (right).

0 10 20 30
time (in months)

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

. o
f p

ac
ka

ge
s (

cu
m

ul
at

iv
e)

Cargo
NPM
Packagist

0 10 20 30
number of releases

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Duration (in months) and number of re-
leases between first 0.y.z and first ≥1.0.0 release.

We observe that a majority of packages take only a few
months and a few release updates to reach≥1.0.0. The median
duration varies between 1.6 months (for npm) and 3.8 months
(for Cargo) while the median number of release updates is 3
for each package distribution. Yet there are many packages
that took much longer to reach ≥1.0.0. Over one out of
five packages (24.7% in Cargo, 20.2% in npm and 22.6% in
Packagist) needed more than a year to reach ≥1.0.0, and
around 9% of packages in each package distribution needed
more than 2 years.

Summary. Less than one out of ten packages went from
0.y.z to ≥1.0.0 releases. While a majority of them only
took a few months and a few updates to reach ≥1.0.0,
one out of five of them took more than one year to reach
≥1.0.0, and one out of ten took even more than two years.

4.3 Are 0.y.z Packages Updated More
Frequently?

One would expect packages under initial development to
release new updates more frequently than mature packages.
This is notably assumed by the semver policy that states that
“major version zero is all about rapid development”. To verify
this assumption we computed the distribution of the average
time (per package) between consecutive releases, for 0.y.z
and ≥1.0.0 releases respectively. Figure 4 shows the boxen
plots [11] for these distributions.

0.y.z >=1.0.0
0

50

100

150

tim
e

be
tw

ee
n

up
da

te
s (

in
 d

ay
s) Cargo

0.y.z >=1.0.0

NPM

0.y.z >=1.0.0

Packagist

Figure 4: Distributions of the average time between
consecutive releases, for 0.y.z and ≥1.0.0 releases.

We observe that for all package distributions, 0.y.z releases
are more frequently updated than ≥1.0.0 releases (i.e., the
average time between releases is higher in ≥1.0.0 than in 0.y.z
releases). For instance, the median values are 18.9 and 23.8
days for Cargo (respectively for 0.y.z then ≥1.0.0 releases),
3.3 and 4 days for npm, and 12.6 and 27 days for Packagist.
To confirm that these differences between 0.y.z and ≥1.0.0
release are statistically significant, we carried out Mann-
Whitney-U tests [14]. The null hypothesis stating that there
is no difference between 0.y.z and ≥1.0.0 releases was rejected
for all three package distributions with 𝑝 < 0.01 (adjusted
after Bonferroni-Holm method to control family-wise error
rate [12]). However, the effect size (measured using Cliff’s
delta |𝑑| [4]) revealed that the observed differences were
negligible for Cargo (|𝑑| = 0.084) and npm (|𝑑| = 0.027), and

How Magic Is Zero? ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

small for Packagist (|𝑑| = 0.178), following the interpretation
of |𝑑| by Romanoet al. [18].

We also observe that the time to update a package release
depends on the package distribution: package releases on
npm are much more frequently updated than in the two
other distributions. Mann-Whitney-U tests confirmed this
observation with statistically significant differences (𝑝 <
0.01), implying that packages in npm are indeed updated
more frequently than packages in Cargo and Packagist. In
both cases the effect size was small (|𝑑| = 0.319 for Cargo,
|𝑑| = 0.324 for Packagist).

Summary. 0.y.z package releases are updated more fre-
quently than ≥1.0.0 releases, but the effect is small for
Packagist, and negligible for Cargo and npm. Both 0.y.z
and ≥1.0.0 package releases are updated more frequently
in npm than in Cargo and Packagist.

4.4 Are 0.y.z Package Releases Required
by Other Packages?

If one assumes that 0.y.z packages are still under initial devel-
opment, it could be considered unsafe to rely on them since
they are expected to be less complete and less stable than
production-ready packages. This is confirmed by the semver
policy [15]: “If your software is being used in production, it
should probably already be 1.0.0.” Moreover, such 0.y.z pack-
ages are likely to require extra effort from maintainers of
packages depending on them. Indeed, since “anything may
change at any time [and] the public API should not be con-
sidered stable”, dependent packages are more likely to face
breaking changes with 0.y.z packages than with ≥1.0.0 pack-
ages. semver even recommends that “If you have a stable API
on which users have come to depend, you should be 1.0.0”.

This research question therefore studies the extent to which
packages rely on such 0.y.z packages, considering the depen-
dencies expressed in the latest release of each 0.y.z and ≥1.0.0
package. Table 2 reports the proportion of dependent pack-
ages (%sources) relying on at least one 0.y.z package, and
the proportion of required packages (%targets) being used
by at least one ≥1.0.0 package. We distinguish between 0.y.z
and ≥1.0.0 sources and targets.

The reported proportions vary greatly from one pack-
age distribution to another. For instance, a large majority
(88.5% = 81.8 + 6.7) of the dependent packages in Cargo
rely on 0.y.z releases, 81.8% being 0.y.z dependent packages
as well and only 6.7% being ≥1.0.0 dependent packages.
For Packagist, the inverse is true: most dependent packages
(86.1% = 21.3 + 64.8) rely exclusively on ≥1.0.0 package
releases. npm falls somewhere in the middle of both extremes,
with 46.4% (= 26.5 + 19.9) dependent packages relying on
0.y.z package releases, and the remaining 53.6% (= 21.1+32.5)
relying exclusively on ≥1.0.0 package releases. Nevertheless,
in all three package distributions there is still a large number
of dependent packages relying on at least one 0.y.z package.

When considering these numbers proportionally to the
set of required packages (i.e., % targets), we observe that

Table 2: Proportion of source and target packages,
depending on or required by 0.y.z and ≥1.0.0 pack-
ages.

target

ecosystem source 0.y.z ≥1.0.0 0.y.z ≥1.0.0

Cargo
0.y.z 81.8 10.4 75.9 6.7

≥1.0.0 6.7 1.2 11.7 5.7

npm
0.y.z 26.5 21.1 24.8 11.4
≥1.0.0 19.9 32.5 15.8 48.0

Packagist
0.y.z 8.4 21.3 13.9 11.3

≥1.0.0 5.5 64.8 6.1 68.7

proportionally to % sources % targets

87.6% (= 75.9 + 11.7) of the required packages in Cargo are
0.y.z packages. This proportion drops to 20% (= 13.9 + 6.1)
for Packagist. Again, npm is in between, with 40.6% (=
24.8 + 15.8) of the required packages being 0.y.z packages.
This indicates that in all three package distributions, at
varying degrees, many 0.y.z packages are still being used by
other packages, including ≥1.0.0 ones. This is rather counter-
intuitive: package maintainers frequently depend on packages
that are still under initial development, even though common
wisdom says that such packages are more likely to be unstable.

For each package distribution we computed the number
of dependent packages (i.e., reverse dependencies) for 0.y.z
and ≥1.0.0 packages, respectively. We compared both distri-
butions using a Mann-Whitney-U test to find evidence of a
statistical difference. The null hypothesis was rejected for all
three package distributions (𝑝 < 0.01 after Bonferroni-Holm
correction), suggesting that ≥1.0.0 packages are reused more.
However, the effect size was negligible for all three package
distributions (0.062 ≤ |𝑑| ≤ 0.097).

Summary. Many packages are depending on 0.y.z pack-
ages, ranging from 13.9% of all dependent packages in
Packagist to 88.5% in Cargo. Many 0.y.z packages are re-
quired by other packages, ranging from 20% of all required
packages in Packagist to 87.6% in Cargo. We could not
observe any practical difference between the number of
dependent packages for 0.y.z and ≥1.0.0 packages.

4.5 How Permissive Are Dependency
Constraints Towards Required 0.y.z
Packages?

This research question focuses on a variation on the theme
of unstable initial development packages. Under the premise
that 0.y.z packages are unstable, the semver policy assumes
that any update of such a package could introduce backward
incompatible changes: “Major version zero (0.y.z) is for
initial development. Anything may change at any time. The
public API should not be considered stable.” [15]

When specifying package dependencies, package maintain-
ers make use of dependency constraints to specify if new

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Alexandre Decan and Tom Mens

Cargo NPM Packagist
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

. o
f c

on
st

ra
in

ts

96.1%

1.2%

73.4%

0.5%

73.4%

18.2%

target is 0.y.z

patch minor major
Cargo NPM Packagist
2.8%

87.4%

9.4%

5.5%

76.2%

4.1%

13.0%

67.3%

10.2%

target is >=1.0.0

Figure 5: Proportion of dependency constraints ac-
cepting at most patches, minor or major releases,
grouped by target releases.

patches, new minor and/or new major releases of the re-
quired package are allowed to be automatically installed and,
by extension, are assumed to be backwards compatible. Since
the way such constraints can be specified and interpreted de-
pends on the package distribution [7], we wrote a dependency
constraint parser for each package distribution to convert
the constraints to a more generic and uniform version range
notation [6].

Figure 5 reports the proportion of dependency constraints
in the latest snapshot of each package distribution accepting
at most patches, minor or major releases, separating between
dependencies targeting 0.y.z releases and ≥1.0.0 releases,
respectively.

In order to be semver-compliant, only strict constraints
(i.e., constraints that only accept a single version) to 0.y.z
package releases should be allowed to avoid the risk of in-
troducing breaking changes. However, we observe that the
large majority of the dependencies targeting 0.y.z releases
are more permissive: they allow patches to be automati-
cally installed, from 73.9% (=73.4 + 0.5) in npm to 97.3%
(=96.1 + 1.2) in Cargo. Packagist is even more permissive,
since a non-negligible proportion of dependency constraints
to 0.y.z package releases accept minor release updates as well
(18.3% of all constraints targeting 0.y.z releases).

For comparison, we carried out the same analysis for depen-
dencies targeting ≥1.0.0 releases. For those cases, the semver
policy considers it safe to accept minor release updates (since
minor releases are expected to contain only backward com-
patible changes). We indeed observe that the large majority
of dependencies towards ≥1.0.0 releases accept minor releases
as well. For instance, we found 87.4% of such dependencies
in Cargo, 76.2% in npm, and 67.3% in Packagist.

Summary. Most dependencies towards 0.y.z releases
accept new patches, indicating that these patches are
expected to be backwards compatible. As such, the con-
sidered package distributions adopt a policy that is more
permissive than semver for 0.y.z releases.

5 THREATS TO VALIDITY

We discuss the main threats that may affect the validity of
our findings, following the structure recommended by Wohlin
et al. [21].

Threats to construct validity concern the relation between
the theory behind the experiment and the observed find-
ings. The accuracy of our findings assumes that the package
dependency metadata extracted from libraries.io is correct.
We manually checked this assumption in previous work that
relied on the same dataset [7, 9]. Our findings also depend on
the “noise” that may be present in the original data provided
by the package distributions. As explained in Section 3, we
removed such noise by excluding package releases from npm
and Packagist that did not correspond to real development.
Another source of imprecision relates to the preparatory pars-
ing step to convert dependency constraints to a more generic
version range notations, as explained in Section 4.5. Since
the large majority of constraints could be parsed (98.3%),
this is unlikely to affect our results.

Threats to internal validity concern choices and factors
internal to the study that could influence the observations
we made. We did not find any such threats in our work.

Threats to conclusion validity concern the degree to which
the conclusions we derived from our data analysis are reason-
able. Given that our findings are based on empirical obser-
vations and on statistical tests with a high confidence level
(𝛼 = 0.01 adjusted after Bonferroni-Holm method to control
family-wise error rate [12]), they are not affected by such
threats.

The threats to external validity concern whether the re-
sults can be generalized outside the scope of this study. The
proposed approach is certainly generalizable to other package
distributions since it is mainly observational. The observed
findings themselves, however, are specific to the considered
package distributions, since they are highly dependent on
their policies and practices. We already found important dif-
ferences among the three package distributions we analyzed,
and we expect to see more such differences in other distribu-
tions, especially the ones relying on other versioning schemes
(e.g., Hackage for Haskell or PyPI for Python).

6 DISCUSSION

Our empirical analysis aimed to verify the convention that
0.y.z packages are considered to be under initial development
and therefore potentially less stable than ≥1.0.0 releases. The
results we obtained seem to suggest the opposite: most 0.y.z
packages are assumed to be production ready and safe to use,
implying there is probably little difference between how 0.y.z
and ≥1.0.0 releases are perceived in practice.

The psychological 1.0.0 version barrier might explain why
so few packages reach a ≥1.0.0 release. A 1.0.0 version is
usually associated with the promise of a stable API and a
mature library. We believe that most 0.y.z package developers
avoid to cross the 1.0.0 barrier in order to keep the freedom
to make API (breaking) changes, and to not have to commit
to the (overly optimistic and unrealistic) bug-free nature of

How Magic Is Zero? ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

≥1.0.0 releases, even if their package already reached this
degree of maturity.

There are plenty examples of popular 0.y.z packages being
developed for years, known for their stability and maturity
and being used in production by thousands of users. One such
example is pandas, one of the most famous Python libraries.
Despite its widespread use in industry and academics, it will
only reach its first ≥1.0.0 release during 2020, after more
than 8 years of development and nearly one hundred releases.

Therefore, it is not surprising that we did not observe any
fundamental difference between 0.y.z packages and ≥1.0.0
packages, both in terms of update frequency and usage by
other packages, even if the common belief suggests such a
difference holds. This belief is reinforced by how package dis-
tributions and versioning policies treat both types of packages.
Indeed, we found that npm, Packagist and Cargo make an
explicit distinction between how dependency constraints are
treated for 0.y.z and ≥1.0.0 releases, based on the presumed
degree of maturity.

An alternative approach consists of not distinguishing
between 0.y.z and ≥1.0.0 releases. This is the case for Haskell
packages, for which the official versioning policy explicitly
states that “packages with a zero major version provide the
same contractual guarantees as versions released with a non-
zero major version”.6 This is not a perfect solution either,
since in practice it seems to encourage maintainers not to
cross the 1.0.0 version barrier: “an easily spottable plague of
an absolute majority of Haskell packages is that they get stuck
in the 0.x.x version space, thus forever retaining that “beta”
feeling even if the package’s API remains stable for years and
has dependencies counted by thousands”.7

Summary. By defining different rules and conventions
for 0.y.z and ≥1.0.0 releases, package distributions and
versioning policies reinforce the artificial psychological
barrier related to a 1.0.0 version number. There is no
fundamental reason to consider that 0.y.z releases do not
fulfil the same contracts or promises as ≥1.0.0 releases,
especially as soon as a package is ready to be distributed
and used by others.

Our findings revealed that the semver policy does not
correspond to how Cargo, npm and Packagist deal with 0.y.z
package releases in practice. This difference can be quite
confusing for practitioners.

Firstly, while semver considers that “major version zero is
all about rapid development”, we found no conclusive evidence
of this. Indeed, only a small proportion of packages went
from 0.y.z to ≥1.0.0 releases, even after years of development.
Moreover, we observed that 0.y.z releases are not updated
considerably more frequently than ≥1.0.0 releases.

Secondly, semver has no specific rule dictating how to in-
crement the version number of a 0.y.z release to indicate a
compatible update. The policy is overly restrictive by assum-
ing that “anything may change at any time” and that “the

6https://pvp.haskell.org/faq/
7https://www.reddit.com/r/haskell/comments/31e3jj/

public API should not be considered stable”. Package distribu-
tions have therefore introduced notations and guidelines to
circumvent this restriction: Cargo defines caret requirements
(i.e., ∧x.y.z) as a way to “allow semver compatible updates to
a specified version” but its implementation accepts patches
for 0.y.z releases.8 The documentation of npm recommends
“starting your package version at 1.0.0 to help developers who
rely on your code”9 and even explicitly mentions that “many
authors treat a 0.x version as if the x were the “breaking-
change” indicator”.10 This is a likely explanation for the
findings in Section 4.5 that most dependencies towards 0.y.z
releases accept new patches.

Thirdly, semver considers that “if you have a stable API
on which users have come to depend, you should be 1.0.0”
and that “if your software is being used in production, it
should probably already be 1.0.0”. Our findings contradict
these guidelines. We observed that many 0.y.z packages are
heavily used by other packages, including by “production-
ready” (i.e.,≥1.0.0) packages. For example, the axios package
on npm has not yet reached a ≥1.0.0 release, even though
it is directly required by 30K other npm packages, and it
exceeds 5M weekly downloads. A similar example for Cargo
is the rand package. It has more than 25M downloads and
more than 3K direct dependent packages, despite still being
in 0.y.z since 2015 and having released more than 60 versions.

Summary. Package maintainers in the considered pack-
age distributions do not strictly follow semver for 0.y.z
releases, and adopt a more permissive policy. This devi-
ation from the semver policy should be made explicit, or
the semver policy should be adapted to allow maintainers
to specify backwards compatible updates for 0.y.z releases.

7 CONCLUSION

In order for a mature software project to be considered
healthy, it should avoid depending on unstable and immature
reusable packages that are still in their initial development
phase. A popular convention is to consider that a 0.y.z ver-
sion number corresponds to such initial development phase,
conveying that the package is probably less complete, mature
and stable than a ≥1.0.0 package release. This convention is
reflected in package distributions and versioning policies that
define different rules for 0.y.z and ≥1.0.0 package releases. In
this paper, we verified if this convention is actually followed
in practice, by empirically studying how 0.y.z and ≥1.0.0
package releases behave in the Cargo, npm and Packagist
package distributions.

We observed that 0.y.z releases are prevalent in all three
distributions, even contributing to 90% of all packages in
Cargo. We found that only a small proportion of packages went
from a 0.y.z to a ≥1.0.0 release. While the majority of them
took a few months and a few updates to do so, one out of five
packages needed more than a year to reach a ≥1.0.0 release.

8https://doc.rust-lang.org/cargo/reference/specifying-
dependencies.html
9https://docs.npmjs.com/about-semantic-versioning
10https://docs.npmjs.com/misc/semver

https://pvp.haskell.org/faq/
https://www.reddit.com/r/haskell/comments/31e3jj/
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/misc/semver

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Alexandre Decan and Tom Mens

We observed that 0.y.z packages are updated slightly more
frequently than ≥1.0.0 packages, but the difference is small
in Packagist, and even negligible in Cargo and npm. We found
that many 0.y.z packages are already used by other packages,
and that many ≥1.0.0 packages are relying on 0.y.z packages.
We studied how often 0.y.z and ≥1.0.0 releases are required
by other packages but found no practical difference between
them. Finally, we assessed whether 0.y.z releases comply
with the semver policy by analysing dependency constraints
towards 0.y.z releases. We found that the considered package
distributions adopt a policy that is more permissive than
semver, since most of these dependencies accept new patches.

These results suggest there is probably little difference
between how 0.y.z and ≥1.0.0 releases are perceived and
behave in practice. They contradict the assumption that
0.y.z packages correspond to the lower degree of maturity
and stability usually associated to the initial development
phase, since in the packaging ecosystems we studied, many
0.y.z packages can already be considered as mature, stable
and healthy packages.

The presented research can be extended in many ways.
For example, one could rely on the development history of
a package to assess at a fine level of granularity whether
0.y.z releases actually correspond to rapid development (e.g.,
based on the number and size of commits and code changes),
contain less or less stable features (e.g., based on the number
of feature and pull requests), or are more prone to bugs
and security vulnerabilities (e.g., based on the number of
reported issues). The presented quantitative analysis could
be complemented by a qualitative one based on interviews of
package developers. Such interviews can help to understand
why package maintainers are reluctant to cross the 1.0.0
barrier, how they perceive 0.y.z releases, and if they consider
them different from ≥1.0.0 releases.

ACKNOWLEDGMENTS

This work was supported by the Fonds de la Recherche Scien-
tifique – FNRS under Grants number T.0017.18, O.0157.18F-
RG43 and J.0151.20.

REFERENCES
[1] Christopher Bogart, Anna Filippova, Christian Kästner, James

Herbsleb, and Ferdian Thung. 2017. Values and practices in 18
software ecosystems. http://breakingapis.org/survey/

[2] Christopher Bogart, Christian Kästner, James Herbsleb, and Fer-
dian Thung. 2016. How to break an API: cost negotiation and
community values in three software ecosystems. In International
Symposium on Foundations of Software Engineering. ACM, 109–
120. https://doi.org/10.1145/2950290.2950325

[3] Andrea Capiluppi, Jesus Gonzales-Barahona, Israel Herraiz, and
Gregorio Robles. 2007. Adapting the “staged model for soft-
ware evolution” to Free/Libre/Open Source Software. In Int’l
Workshop on Principles of Software Evolution. ACM, 79–82.
https://doi.org/10.1145/1294948.1294968

[4] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to
answer ordinal questions. Psychological bulletin 114, 3 (1993),
494. https://doi.org/10.1037/0033-2909.114.3.494

[5] Joenio Costa, Christina Chavez, and Paulo Meirelles. 2018. On
the sustainability of academic software: The case of static analysis
tools. In Brazilian Symposium on Software Engineering. ACM,
202–207. https://doi.org/10.1145/3266237.3266243

[6] Alexandre Decan. 2018. python-intervals 1.10.0 – Python data
structure and operations for intervals. https://github.com/
AlexandreDecan/python-intervals

[7] Alexandre Decan and Tom Mens. 2019. What do package depen-
dencies tell us about semantic versioning? IEEE Transactions
on Software Engineering (2019), 1–1. https://doi.org/10.1109/
TSE.2019.2918315

[8] Alexandre Decan, Tom Mens, and Maelick Claes. 2017. An empiri-
cal comparison of dependency issues in OSS packaging ecosystems.
In Int’l Conf. Software Analysis, Evolution, and Reengineering.
2–12. https://doi.org/10.1109/SANER.2017.7884604

[9] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2018. An
empirical comparison of dependency network evolution in seven
software packaging ecosystems. Empirical Software Engineering
(2018). https://doi.org/10.1007/s10664-017-9589-y

[10] Juan Fernandez-Ramil, Angela Lozano, Michel Wermelinger,
and Andrea Capiluppi. 2008. Empirical studies of open source
evolution. In Software evolution. Springer, 263–288. https:
//doi.org/10.1007/978-3-540-76440-3 11

[11] Heike Hofmann, Hadley Wickham, and Karen Kafadar. 2017.
Letter-Value Plots: Boxplots for Large Data. Journal of Compu-
tational and Graphical Statistics 26, 3 (2017), 469–477. https:
//doi.org/10.1080/10618600.2017.1305277

[12] Sture Holm. 1979. A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics 6, 2 (1979), 65–70.
http://www.jstor.org/stable/4615733

[13] Jeremy Katz. 2018. Libraries.io Open Source Repository and
Dependency Metadata (version 1.4.0). https://doi.org/10.5281/
zenodo.2536573

[14] Henry B. Mann and Donald R. Whitney. 1947. On a Test of
Whether one of Two Random Variables is Stochastically Larger
than the Other. Ann. Math. Statist. 18, 1 (03 1947), 50–60.
https://doi.org/10.1214/aoms/1177730491

[15] Tom Preston-Werner. 2013. Semantic Versioning 2.0.0.
https://semver.org.

[16] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2017.
Semantic versioning and impact of breaking changes in the Maven
repository. Journal of Systems and Software 129 (2017), 140 –
158. https://doi.org/10.1016/j.jss.2016.04.008

[17] Václav T. Rajlich and Keith H. Bennett. 2000. A Staged Model
for the Software Lifecycle. IEEE Computer 33, 7 (July 2000),
66–71. https://doi.org/10.1109/2.869374

[18] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff
Skowronek, and Linda Devine. 2006. Exploring methods for
evaluating group differences on the NSSE and other surveys: Are
the t-test and Cohen’s d indices the most appropriate choices?. In
Annual Meeting of the Southern Association for Institutional
Research.

[19] Alexander Stuckenholz. 2005. Component Evolution and Version-
ing State of the Art. SIGSOFT Softw. Eng. Notes 30, 1 (Jan.
2005), 7. https://doi.org/10.1145/1039174.1039197

[20] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016.
A look at the dynamics of the JavaScript package ecosystem. In
Int’l Conf. Mining Software Repositories (Austin, Texas). ACM,
351–361. https://doi.org/10.1145/2901739.2901743

[21] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson,
Björn Regnell, and Anders Wesslén. 2012. Experimentation in
software engineering. Springer Science & Business Media. https:
//doi.org/10.1007/978-1-4615-4625-2

http://breakingapis.org/survey/
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/1294948.1294968
https://doi.org/10.1037/0033-2909.114.3.494
https://doi.org/10.1145/3266237.3266243
https://github.com/AlexandreDecan/python-intervals
https://github.com/AlexandreDecan/python-intervals
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/978-3-540-76440-3_11
https://doi.org/10.1007/978-3-540-76440-3_11
https://doi.org/10.1080/10618600.2017.1305277
https://doi.org/10.1080/10618600.2017.1305277
http://www.jstor.org/stable/4615733
https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1109/2.869374
https://doi.org/10.1145/1039174.1039197
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2

	Abstract
	1 Introduction
	2 Related Work
	3 Data Extraction
	4 Research Questions
	4.1 How Prevalent Are 0.y.z Packages?
	4.2 How Long Does It Take to Reach 1.0.0?
	4.3 Are 0.y.z Packages Updated More Frequently?
	4.4 Are 0.y.z Package Releases Required by Other Packages?
	4.5 How Permissive Are Dependency Constraints Towards Required 0.y.z Packages?

	5 Threats to Validity
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

