
On the Outdatedness of Workflows
in the GitHub Actions Ecosystem

Alexandre Decan1, Tom Mens, Hassan Onsori Delicheh
aSoftware Engineering Lab, University of Mons, Mons, Belgium

Abstract

GitHub Actions was introduced as a way to automate CI/CD workflows in
GitHub, the largest social coding platform. Thanks to its deep integration into
GitHub, GitHub Actions can be used to automate a wide range of social and
technical activities. Among its main features, it allows automation workflows
to rely on reusable components – the so-called Actions – to enable developers to
focus on the tasks that should be automated rather than on how to automate
them. As any other kind of reusable software components, Actions are contin-
uously updated, causing many automation workflows to use outdated versions
of these Actions. Based on a dataset of nearly one million workflows obtained
from 22K+ repositories between November 2019 and September 2022, we pro-
vide quantitative empirical evidence that reusing Actions in GitHub workflows
is common practice, even if this reuse tends to concentrate on a limited number
of Actions. We show that Actions are frequently updated, and we quantify to
which extent automation workflows are outdated with respect to these Actions.
Using two complementary metrics, technical lag and opportunity lag, we found
that most of the workflows are using an outdated Action release, are lagging
behind the latest available release for at least 7 months, and had the oppor-
tunity to be updated during at least 9 months. This calls for a more rigorous
management of Action outdatedness in automation workflows, as well as for
better policies and tooling to keep workflows up-to-date.

Keywords: software ecosystem, dependency management, continuous
integration, collaborative software development, workflow automation,
technical lag

Email addresses: alexandre.decan@umons.ac.be (Alexandre Decan),
tom.mens@umons.ac.be (Tom Mens), hassan.onsoridelicheh@umons.ac.be (Hassan Onsori
Delicheh)

1F.R.S.-FNRS Research Associate

Preprint submitted to Journal of Systems & Software August 24, 2023

1. Introduction

Over 80% of today’s software is either open source or is depending on it
to a large extent.2 Open source software development has become a contin-
uous, highly distributed and collaborative endeavour [1]. A wide range of
development-related tasks must be carried out during collaborative software
development: developing, debugging, testing and reviewing code; quality and
security analysis; packaging, releasing and deploying software distributions; and
so on. This makes it increasingly challenging for contributor communities to
keep up with the rapid pace of producing and maintaining high-quality soft-
ware releases. It requires the orchestrated use of tools such as version control
systems, software distribution managers, bug and issue trackers, vulnerability
and dependency analysers. These tools tend to be integrated into social coding
platforms that have revolutionised collaborative software development practices
in the last decade. A well-known example is GitHub, which is by far the largest
social coding platform, hosting millions of software repositories, and accommo-
dating over 94 million users in 2022 [2].

To keep up with the rapid pace of producing and maintaining high-quality
software releases, automation workflows were introduced to automate numerous
repetitive activities that are part of the development process [3]. Continuous
integration, deployment and delivery (CI/CD) have become the cornerstone of
collaborative software development and DevOps practices. While CI/CD ser-
vices (e.g., Travis or Jenkins) have been in widespread use for over a decade,
they became tightly integrated into the most popular social coding platforms,
effectively transforming the development workflow automation landscape [4].
GitHub publicly announced the beta version of GitHub Actions (hereafter ab-
breviated GHA) in October 2018 to support CI/CD for GitHub repositories, al-
lowing developers to automate their workflows directly within GitHub. GitHub
officially released GHA in November 2019.

The deep integration of GHA into GitHub enables to use this technology for
a wide range of services including CI/CD, code reviewing, communication with
developers, verifying licence agreements, and monitoring and fixing dependen-
cies and security vulnerabilities. GHA workflows can be triggered by a variety of
events, including commits, issues, pull requests, comments, schedules, releases
and tags [5]. Workflow developers have the choice between defining sequences
of commands to be executed or using Actions as reusable components. These
Actions are developed and distributed in public GitHub repositories and on the
GitHub Marketplace.3

Since its public release, GHA has become the dominant CI/CD service on
GitHub, only 18 months after its introduction [4]. Its Marketplace of reusable
Actions has been growing very rapidly ever since, reaching 16K Actions in De-
cember 2022. Given the wide availability and use of Actions [6], GHA bears

2https://www.linuxfoundation.org/blog/chaoss-project-creates-tools-to-
analyze-software-development-and-measure-open-source-community-health/

3https://github.com/marketplace?type=actions

2

https://www.linuxfoundation.org/blog/chaoss-project-creates-tools-to-analyze-software-development-and-measure-open-source-community-health/
https://www.linuxfoundation.org/blog/chaoss-project-creates-tools-to-analyze-software-development-and-measure-open-source-community-health/
https://github.com/marketplace?type=actions

many similarities to ecosystems of reusable software libraries (such as npm,
RubyGems, Maven or PyPI) [7]. These library ecosystems are known to suf-
fer from various issues related to dependency management [8, 9, 10], security
vulnerabilities [11, 12, 13], backward compatibility [14, 15, 16], outdated com-
ponents [17, 18, 19], deprecated and obsolete components [20] and loss of core
developers [21]. Wessel et al. [22] extensively argue that GHA is forming a
similar, yet quite distinct, ecosystem that is likely to suffer from very similar
issues.

This article focuses on one of these issues in more detail, namely the out-
datedness of workflows induced by the Actions used by them. Just like reusable
software libraries, Actions are continuously updated, and workflow maintainers
are confronted with the difficult choice of whether, when, and how to keep these
components up to date [20].

On the one hand, maintainers would ideally adopt the most recent updates
of the components they use as soon as they become available, in order to benefit
from the latest bug and security fixes. On the other hand, reusable components
may cause workflows to become outdated because workflow maintainers may not
be aware of available updates [23]. Moreover, maintainers sometimes consciously
choose not to update because they feel they do not need the new functionality
(“if it ain’t broke, don’t fix it”), because upgrading exposes to an increased risk
of breaking changes, or because of the cost and effort required to update. This
conscious choice increases the risk of having bugs and security issues that may
have known fixes [24, 25]. Infamous examples include the equifax and Log4Shell
incidents, and vulnerable and outdated components are nowadays acknowledged
as being a major security risk [26].

The same is likely to hold for GHA workflows relying on outdated Actions.
According to GitHub Security Lab, “a compromised or malicious Action could
potentially disrupt automatic workflows of your repository” and “all options [to
refer to an Action] are a trade-off between guaranteed supply chain integrity and
auto-patching of vulnerabilities in dependencies”.4 Despite its recency, GHA
already exhibited several examples of Action releases suffering from security
issues for which fixes have been made available in newer releases.5

In this article, based on a dataset of nearly one million workflows obtained
from 22K+ repositories between November 2019 and September 2022, we ad-
dress two main research goals related to the reuse of Actions by GitHub work-
flows and the outdatedness resulting from such reuse. We decided to carry out
an evolutionary analysis, in order to determine whether any significant changes
could be observed over time.
G1 The first research goal aims to provide quantitative insights on how work-
flows in GitHub repositories tend to rely on reusable Actions over time. To do
so, we study three research questions:

4https://securitylab.github.com/research/github-actions-building-blocks/
5https://github.com/advisories?query=ecosystem%3Aactions

3

https://securitylab.github.com/research/github-actions-building-blocks/
https://github.com/advisories?query=ecosystem%3Aactions

RQ1 To which extent do workflows rely on reusable Actions? This question
aims to highlight the prevalence of reusable Actions in GitHub workflows.
We show that relying on reusable Actions is common and that a limited
number of Actions concentrate most of the reuse.

RQ2 How frequently are Actions and workflows updated? This question focuses
on how workflows and Actions evolve over time. We show that Actions
and workflows are continuously updated.

RQ3 Which versioning practices are being used in GHA? This question studies
whether workflows and Actions adhere to a semantic versioning policy or
whether other versioning practices are being used. We show that most
Actions follow a three-component versioning notation and that GitHub’s
recommendation for semantic versioning is widely followed.

G2 The second research goal focuses on quantifying the outdatedness of work-
flows in terms of the reusable Actions used by them. We again study three
research questions:

RQ4 How prevalent are outdated workflows? This question aims to highlight
the prevalence of workflows relying on outdated releases of Actions. We
show that most of the workflows are using an outdated release of an Action.

RQ5 What is the technical lag of workflow steps? This question aims to quantify
the extent to which workflows are outdated w.r.t. the Actions they are
using. Based on an existing metric of technical lag, we show that most
workflow steps are lagging behind the latest available release of the used
Actions for at least seven months.

RQ6 What is the opportunity lag of workflow steps? This question focuses
on an alternative and complementary way of quantifying the extent to
which workflows are outdated. By introducing and using a newly pro-
posed metric of opportunity lag, we show that most workflow steps had
the opportunity to update the Actions they use for nine months, but did
not.

The remainder of this paper is structured as follows. Section 2 presents
related work. Section 3 introduces the core concepts of GHA and the data
extraction process. Sections 4 and 5 address the first and second research goal,
respectively. Section 6 discusses the findings and their implications. Section 7
presents the threats to validity of the research, and Section 8 concludes.

2. Related work

2.1. On Continuous Integration, Deployment and Delivery
Fowler and Foemmel proposed a set of 10 Continuous Integration (CI) core

practices for software development acceleration and software quality enhance-
ment in their seminal blog in 2000 [3]. Elazhary et al. [27] studied the benefits

4

and challenges of these practices in three software-producing companies, ob-
serving that these practices were widely followed but with quite some variation.
They called for more research to comprehend these variations and their effects
on software quality and process improvement.

Vasilescu et al. [28] empirically analysed the effect of introducing CI to the
pull request (PR) process of 246 GitHub projects. They found that CI improves
productivity, leading to more PRs being processed, accepted and merged, with-
out any negative side effect on code quality. Hilton et al. [29] studied the usages,
costs and benefits of CI. Through a mixed-methods study involving 442 develop-
ers, 34K GitHub projects and 1.5M CI builds, they analysed which CI services
developers use, and how and why developers use them. Among others, they
found that most projects relied on Travis to implement their CI, and projects
with CI tend to release twice as often, accept PRs faster, and their developers
are less worried about breaking builds.

Shahin et al. [30] carried out a Systematic Literature Review (SLR) of 69
scientific articles to categorize the tools, approaches, challenges and practices
related to continuous integration, delivery and deployment (CI/CD). They re-
ported that CI/CD is mostly used to reduce build and test time, to increase
the visibility and awareness of build and test results, to detect violations, and
to improve the reliability of the deployment process. Soares et al. [31] also con-
ducted an SLR on the use of CI. They analysed 101 empirical studies published
between 2003 and 2019 to identify and interpret empirical evidence regarding
how CI impacts software development activities and processes. They observed
an increase in CI research in recent years, and much of the existing research re-
veals that CI brings positive effects to software development, such as improved
productivity and efficiency, increased developer confidence, faster iterations and
more stability. None of the aforementioned SLRs considered publications pub-
lished after 2019, hence they do not include any study reporting on the use or
impact of GHA.

Golzadeh et al. [4] published the first empirical study on CI services that
also considered GHA. They conducted a longitudinal quantitative analysis on
the use of 20 different CI services from 2011 to 2021 in 91K+ GitHub repositories
related to npm packages. They observed that more and more repositories are
relying on a CI service, and one out of two repositories used a CI in 2021. While
Travis has been the dominant CI for years, the introduction of GHA in 2019
drastically changed the CI landscape on GitHub. It took only 18 months for
GHA to become the most widely used CI service on GitHub, being used by more
than half of the repositories with a CI. Rostami Mazrae et al. [32] confirmed
these quantitative findings through a qualitative study on the usage, co-usage
and migration of CI/CD tools based on in-depth interviews with 22 experienced
practitioners. Among others, they observed a migration towards GHA due to
its deep integration into GitHub, its generous free tier, its build support for the
major operating systems, and its support for reusable Actions.

5

2.2. On GitHub Actions
Due to the relative recency of GHA, research literature on the topic is still

scarce. Kinsman et al. [33] analysed the impact of GHA in 3,190 repositories and
observed that the adoption of GHA increases the number of rejected PRs and
decreases the number of commits in merged PRs. Through a manual inspection
of 209 issues related to GHA, they concluded that developers have an overall
positive perception of GHA. Chen et al. [34] confirmed these observations in a
replication study on 6,246 repositories.

Valenzuela-Toledo and Bergel [35] investigated the use and maintenance of
GHA workflows in 10 popular GitHub repositories based on a manual inspec-
tion of 222 commits related to workflow changes. They determined 11 different
types of workflow modifications and uncovered a number of deficiencies in work-
flow production and maintenance. This calls for adequate tooling to support
creating, editing, refactoring, and debugging workflow files.

Saroar and Nayebi [36] surveyed 90 Action developers and users to under-
stand their motivation, decision criteria, best practices and challenges in creat-
ing, publishing and using Actions. Among others, they found that Actions are
hard to test and debug, and that security concerns are one of the five major
challenges for developers when automating workflows on GitHub. Benedetti
et al. [37] proposed a security assessment methodology to analyse the effects of
security issues on GHA workflows and the software supply chain. They devel-
oped and applied the methodology through an automation tool on 50 GitHub
projects, allowing them to uncover 25K security issues in workflows.

Decan et al. [6] analysed nearly 70K GitHub repositories in order the gain a
deeper insight into the GHA ecosystem. They found that 43.9% of the repos-
itories define a GHA workflow, and they characterised these repositories and
their workflows in terms of which jobs, steps, and reusable Actions were used
and how. They notably observed that workflows are primarily used for devel-
opment purposes, despite the fact that many other kinds of activities could
potentially be automated with GHA. They also observed that nearly all work-
flows use Actions, which may be problematic since issues in these Actions (e.g.,
bugs, security vulnerabilities, outdated or obsolete components) can propagate
to the workflows that use them, potentially affecting the entire ecosystem.

The current paper naturally complements and extends this prior work by
analysing the use (G1) and outdatedness (G2) of workflows w.r.t. the Actions
they use.

2.3. On outdatedness of reusable software components
It is common practice for software developers to depend on reusable software

components to take advantage of ready-to-use code instead of developing every-
thing from scratch [38]. To further facilitate this reuse, package managers and
registries of reusable libraries have been proposed for the main programming
languages (e.g., npm for JavaScript, PyPI for Python, Maven for Java). The
wide availability and popularity of such reusable components facilitates building
software, but it also causes software maintenance and evolution problems [7].

6

For example, even very recent versions of software application may be outdated
because they depend on reusable components that were not updated to their
latest versions.

Kula et al. [23] carried out an empirical study on software library migration
in around 4.6K GitHub projects and 2.7K library dependencies. They found that
81% of the projects do not update their outdated dependencies. When surveying
the project maintainers they discovered that most of them were actually unaware
of such outdated dependencies. Mirhosseini and Parnin [39] studied software
developers’ incentives to update their project dependencies. They analysed
7.5K GitHub projects using badge notifications and automated PRs to inform
developers about outdated dependencies and to update them. They found these
mechanisms to be effective in encouraging developers to update their outdated
dependencies, even though they could be improved further to better align with
developers’ expectations.

Keeping dependencies outdated incurs a higher risk of having bugs and secu-
rity issues that may already have known fixes. Cox et al. [25] analysed 75 Java
projects that manage their dependencies through Maven, and observed that
projects relying on outdated dependencies were four times more likely to have
security issues and incompatibilities. Lauinger et al. [19] published a comprehen-
sive study on the security implications surrounding JavaScript library usage in
133K web applications. 37% of them were found to suffer from at least one secu-
rity vulnerability due to an outdated dependency. Decan et al. [11] analysed to
which extent security vulnerabilities propagate to npm packages through depen-
dencies. They found that the use of dependency constraints plays an important
role in fixing vulnerabilities due to dependencies: too restrictive dependency
constraints prevent 40% of the releases to automatically benefit from security
fixes deployed in more recent versions of their vulnerable dependencies.

Updating dependencies to more recent releases of reusable components is
not for free since it might lead to backward incompatible changes. Moreover,
making the right decision about choosing a proper version can be tricky and
time-consuming [40]. Bavota et al. [41] studied the evolution of dependencies in
Apache. They highlighted that the number of dependencies on reusable compo-
nents is growing exponentially and must be taken care of by developers. They
found that developers were reluctant to upgrade the libraries they depend upon
because of breaking changes. Decan et al. [8] studied the use of dependencies
in npm, CRAN and RubyGems. They found that most projects in these reg-
istries rely on other libraries and that there is an increasing number of projects
whose failure can impact a wide number of (transitively) dependent projects.
They also observed that, in combination with semantic versioning (SemVer6),
dependency constraints can prevent packages from breaking due to dependency
updates, while benefiting from bug and security fixes.

Raemaekers et al. [42] investigated to which extent SemVer is followed in
more than 22K Java libraries on Maven. Breaking changes were observed in

6https://semver.org

7

https://semver.org

one third of all releases, including presumably backward compatible patches
and minor releases. Decan et al. [14] empirically studied the degree of SemVer
compliance in the Cargo, npm, Packagist and RubyGems registries. They ob-
served that compliant dependency constraints increased over time while registry-
specific notations, characteristics, maturity and policy changes played an impor-
tant role in the degree of such compliance.

Given the wide availability and use of Actions, GHA bears many similarities
to these registries of reusable software libraries. Therefore, in this paper, we aim
to quantify how frequently reusable Actions are updated (RQ2), what are the
versioning practices being followed by these Actions (RQ3), and how frequently
workflows are outdated with respect to the used Actions (RQ4).

2.4. On technical lag
The concept of technical lag in a software system was originally introduced

by Gonzalez-Barahona et al. [43] to quantify how outdated a deployed software
component is, reflecting “the increasing lag between upstream development and
the deployed system when no corrective actions are taken”. Technical lag is not
only useful for deployers of software components, but also for the developers of
such components. They can use technical lag to decide whether and when to
update the dependencies of the components they maintain. That way, they can
assess on an informed basis the risks of relying on outdated dependencies [25].

Zerouali et al. [44] used the concept of technical lag to empirically analyse
package dependency updates in the npm registry. Their results indicate a strong
presence of technical lag, with a median time gap of 3.5 months between the
deployed version of a dependency and its latest available one. Decan et al. [17]
analysed the evolution of the technical lag of 8M+ dependencies between 1.4M+
releases of npm packages. They found that one out of four dependencies suffers
from technical lag, and around half of the updates are not automatically ac-
cepted because of the dependency constraints. They also evaluated that strict
compliance to SemVer would reduce the exposure to technical lag by 18%.

Technical lag can be quantified along different dimensions: time (how old is
a dependency compared to a more recent version?), version (how many versions
is a dependency behind?), security (how many security vulnerabilities could
have been fixed by updating the dependency?), and so on. Zerouali et al. [18]
captured these dimensions in a conceptual measurement framework that can
easily be applied to registries of reusable libraries. In particular, they analysed
the technical lag of 500K+ npm packages, observing that around 26% of the
dependencies in these packages are outdated and that half of these outdated
dependencies target a release that is 270+ days older than the newer one. Ze-
rouali et al. [45] also applied this technical lag framework to the DockerHub
registry of Docker container images. They assessed the technical lag of 140K+
Debian-based container images considering five dimensions: the number of out-
dated packages in these images, the time difference between package releases,
the number of missed releases, the number of vulnerabilities and the number of
bugs.

8

Gonzalez-Barahona [46] proposed a model based on the technical lag frame-
work to better understand the factors that influence outdatedness of an appli-
cation produced with reusable components. He found that some factors depend
on the upstream developers, on the application developers, and on the collection
used to pull components from. Stringer et al. [47] carried out a large-scale analy-
sis of technical lag across 14 major package managers. They found that technical
lag is common in these package managers, although the quantity varies widely.
They observed that technical lag is mostly due to strict dependency constraints,
and that more permissive constraints induce less lag. For instance, they evalu-
ated that a strict adherence to SemVer would eliminate a third of the technical
lag. Based on these insights they advocate the use of automated dependency
tracking and updating tools to expedite updates and minimise technical lag.

To reach goal G2 of this paper, we will use technical lag to assess to which
extent reusable Actions used in workflows in GitHub repositories are outdated
with respect to their latest available release (RQ5). We will also propose and
evaluate a complementary metric, baptised opportunity lag, to quantify how long
a reused Action has had the opportunity to be updated but was not (RQ6).

3. Methodology

3.1. About GitHub workflows and reusable Actions
To enable GHA on a repository, one has to create one or more YAML files,

each describing a single workflow, and store them in the .github/workflows
folder. Figure 1 shows an example of a workflow file.7

A workflow defines a set of events (e.g., on lines 3-6, a push, a pull request
and a scheduled event) that trigger the execution of a set of jobs (e.g., line 8). A
job defines a list of steps (e.g., lines 12, 13, 17 and 19) that will be sequentially
executed. Steps are the smallest units of work in a workflow. Through the run:
key a step can specify the commands that will be executed (e.g., lines 18 and
20). A step can also delegate this task by calling a predefined reusable Action
through the uses: key (e.g., lines 12 and 14).

An Action implements a single task (e.g., checking out repositories, deploying
environments) that can be shared for reuse on a public GitHub repository and
promoted on the GitHub Marketplace.8 Workflow maintainers can use Actions
in workflow steps to avoid having to write explicitly the various commands that
need to be executed. Actions are powerful reusable components, since they can
access the GitHub API to interact with repositories (e.g., to create a comment
in a pull request for test reports), or any third-party API (e.g., to deploy a new
release on PyPI).

When a step uses an Action, it should specify the name of the repository
hosting the Action (e.g., actions/checkout). It can also specify the version of

7See https://github.com/pandas-dev/pandas/blob/68f763e7/.github/workflows/code-
checks.yml for a more elaborate example of a workflow file.

8https://github.com/marketplace?type=actions

9

https://github.com/pandas-dev/pandas/blob/68f763e7/.github/workflows/code-checks.yml
https://github.com/pandas-dev/pandas/blob/68f763e7/.github/workflows/code-checks.yml
https://github.com/marketplace?type=actions

1 name : Example o f a workflow f i l e
2 on :
3 push :
4 pull request :
5 schedule :
6 − cron : ”0 6 ∗ ∗ 1”
7 jobs :
8 test :
9 name : Test p r o j e c t

10 runs−on : ubuntu− l a t e s t
11 steps :
12 − uses : a c t i o n s /checkout@v2
13 − name : Set up Python
14 uses : a c t i o n s / setup−python@v2
15 with :
16 python−version : 3 . 9
17 − name : I n s t a l l dependenc ies
18 run : pip i n s t a l l pyte s t
19 − name : Execute t e s t s
20 run : pyte s t

Figure 1: Example of a GHA workflow file.

the Action that should be executed, by means of a step anchor (e.g., @v2).
These anchors can reference a commit hash (e.g., @753c60e0...), a git tag
(e.g., @v2.1.3), or even a branch name (e.g., @main).9 This flexibility in how
to specify anchors for steps is at the same time a source of confusion.

On the one hand, GitHub recommends Action maintainers to number new re-
leases using semantic tags based on a three-component based versioning scheme
(e.g., v1.2.3) in order to be compatible with the recommended practices of
SemVer adopted by the npm JavaScript ecosystem. 10 In prior work we have
analysed the benefits of adhering to such SemVer practices in software packaging
ecosystems [14].

On the other hand, GitHub recommends workflow maintainers to refer to
Action releases through their unique commit hash as it is “the safest for sta-
bility and security”11 since “it is currently the only way to use an action as an
immutable release [and] helps mitigate the risk of a bad actor adding a backdoor
to the Action’s repository”.12 This viewpoint that pinning Action dependen-
cies can help to reduce security risks is shared by Gonzaga [48], member of the
Node.js Technical Steering Committee. Because of this risk, the Node.js Secu-
rity Working Group plans in 2023 to pin all Node.js Actions by their commit

9https://docs.github.com/en/actions/creating-actions/about-custom-actions
10https://docs.github.com/en/actions/creating-actions/releasing-and-

maintaining-actions
11https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-

github-actions
12https://docs.github.com/en/actions/security-guides/security-hardening-for-

github-actions#using-third-party-actions

10

https://docs.github.com/en/actions/creating-actions/about-custom-actions
https://docs.github.com/en/actions/creating-actions/releasing-and-maintaining-actions
https://docs.github.com/en/actions/creating-actions/releasing-and-maintaining-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions

hash.
The interested reader is invited to consult the official GitHub documenta-

tion13 or Chandrasekara and Herath’s book [5] to obtain more information about
GHA.

3.2. Data extraction
To conduct an empirical study on the outdatedness of GHA in software

development repositories, we need a large dataset of GitHub repositories, ex-
cluding repositories that are used only for experimental or personal reasons, or
that show no or little traces of actual software development activity [49]. We
relied on the SEART GitHub search engine [50] to obtain a list of candidate
repositories. We queried the tool on 2022-09-05 to get all non-fork repositories
that were created before 2022, which were still active in 2022, and had at least
100 commits and 100 stars. We obtained 62,673 repositories satisfying these
criteria.

On 2022-09-05, we locally cloned these repositories to look for the presence of
workflow files in the .github/workflows folder of the default branch reported
by the GitHub API. We found 22,758 repositories (i.e., 36.3%) that contained
YAML files in this folder. For each repository, we used the git rev-list
command-line tool to obtain the last commit of each month between October
2019 and August 2022, hence representing the state of the repository for the first
day of each month between November 2019 and September 2022. We parsed
the contents of the YAML files in these commits using the ruamel.yaml Python
library to check whether they actually define a GHA workflow. If that was
the case, we extracted the relevant workflow data (e.g., workflow name, events
triggering the workflow), the jobs configured in the workflow (e.g., job name)
and the steps defined in these jobs (e.g., step name, commands associated to
run: key, Actions associated to uses: key). By means of a regular expression,
we extracted for each step relying on an Action its provider (i.e., the owner of
the repository providing the Action), the Action name and the anchor used to
refer to that Action.

The dataset resulting from this process contains 22,758 distinct GitHub
repositories with 979,591 workflows and 7,927,295 steps over 35 monthly snap-
shots from November 2019 to September 2022. Figure 2 shows the evolution
through these 35 monthly snapshots of the number of repositories using GHA,
as well as the number of workflows and steps. The last considered snapshot
contains 53,801 workflows including 330,186 steps. The figure also reveals slight
variations for the end of 2020. They coincide with restrictions imposed by Travis
on its free plan for public repositories, leading many repositories to switch from
Travis to GHA [4].

The data and code to replicate the analysis are available on https://
zenodo.org/record/8073333.

13https://docs.github.com/en/actions

11

https://zenodo.org/record/8073333
https://zenodo.org/record/8073333
https://docs.github.com/en/actions

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0

10000
20000
30000
40000
50000
60000
70000
80000

repositories
workflows

0
50000
100000
150000
200000
250000
300000
350000
400000

steps (right)

Figure 2: Evolution of the number of repositories using GHA and their number of workflows
(left y-axis) and number of steps (right y-axis).

4. Research goal G1

The aim of G1 is to provide quantitative insights in the prevalence of the use
of Actions in GitHub repository workflows (RQ1), as well as their evolution over
time in terms of update frequency (RQ2) and versioning practices used (RQ3).
This is a prerequisite for goal G2 since it would not make much sense to study
outdatedness of workflows w.r.t. their used Actions if it turns out that workflows
are rarely using Actions or if Actions are rarely releasing new versions.

RQ1 To which extent do workflows rely on reusable Actions?
This question aims to quantify to which extent steps, workflows and reposi-

tories are making use of Actions.
To identify steps using an Action, as explained in Section 3, we used a regu-

lar expression to match the pattern uses: <provider>/<action>[@<anchor>],
where <provider> corresponds to the owner of the repository in which the
<action> is developed, and where the optional <anchor> denotes the ver-
sion of the <action> that should be used in the step.14 A typical example
is uses: actions/checkout@v2 which is the most frequently observed cases in
our dataset, accounting for 26.1% of all matches.

Figure 3 shows the evolution of the proportion of repositories, workflows and
steps that use an Action. We report on these three levels of granularity since
a repository can contain multiple workflows, and a workflow can have multiple
steps. We observe that the vast majority of steps are re-using an Action (through
the uses: key), as opposed to defining sequences of commands (through the
run: key). The proportion of such steps ranges from 61.7% to 64.3%, at the end
of the observation period. As a consequence of this prevalent reuse of Actions
in steps, nearly all workflows and repositories contain steps that are using an

14GitHub’s documentation strongly recommends the use of an anchor. Yet, not specifying
an anchor results in a build failure, explaining why only 25 steps in 4 repositories in our
dataset do not specify an anchor.

12

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0.5

0.6

0.7

0.8

0.9

1.0

pr
op

or
tio

n

repositories workflows steps

Figure 3: Evolution of the proportion of repositories, workflows and steps using an Action.

Action. In the latest considered snapshot, 99.7% of the repositories and 99.1%
of the workflows have at least one step using an Action.

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0

500
1000
1500
2000
2500
3000
3500
4000

Actions
providers

Figure 4: Evolution of the number of distinct Actions and distinct providers.

We identified how many and which Actions are used in workflows. Figure 4
reports on the number of distinct Actions and their providers. It shows a con-
tinuous growth in the number of distinct Actions being used in workflows. Over
the entire observation period, we found 3,519 distinct Actions distributed by
2,442 distinct providers. On average, in the latest considered snapshot, a work-
flow makes use of 2.7 distinct Actions (median is 2), for a total of 2,930 distinct
Actions from 2,064 distinct providers.

However, these 2,930 distinct Actions are not equally used by the steps and
a very large number of steps are using a limited number of distinct Actions. For
instance, the 23 most used Actions, accounting for only 0.79% of the Actions,
already concentrate more than 80% of all reuse. Moreover, 12 Actions out of
these 23 are provided by GitHub (those prefixed with actions/), and action-
s/checkout alone is used in 36% of the steps. The first most widely used Action

13

not provided by GitHub is actions-rs/toolchain, which is used in 3,784 steps (i.e.,
1.78% only).

In order to determine which providers supply the most frequently used Ac-
tions, we identified for the latest snapshot the steps, workflows and repositories
using the Actions provided by them. Table 1 shows the top 10 providers along
with the number of Actions they provide (in our dataset), and the proportion
of steps, workflows and repositories using them. For the sake of completeness,
we also provide these proportions for all other providers. Only steps, workflows
and repositories making use of an Action are considered for this analysis.

Table 1: Top 10 providers whose Actions are the most widely used by steps in the latest
considered snapshot.

provider # Actions % steps % workflows % repositories
actions 26 67.14% 95.44% 98.83%
docker 7 5.06% 4.81% 7.64%
actions-rs 7 2.19% 3.71% 4.45%
codecov 1 1.63% 4.40% 9.20%
shivammathur 2 1.10% 2.92% 4.37%
ruby 2 0.94% 2.53% 4.26%
peter-evans 15 0.63% 1.57% 2.60%
softprops 2 0.61% 1.64% 3.36%
peaceiris 5 0.53% 1.33% 2.93%
pypa 2 0.52% 1.29% 2.77%
other providers 2,861 19.65% 38.23% 48.33%

As expected from the previous analysis, actions/ is the major provider of
Actions used in steps, workflows and repositories. These Actions proposed by
GitHub itself correspond to the basic building blocks for workflows. For instance,
actions/checkout allows to clone the current repository efficiently, Actions of the
form actions/setup-x setup the corresponding programming language environ-
ments (e.g., Java, Python or npm), actions/cache is used to cache dependencies
and build outputs to improve workflow execution time, whereas actions/upload-
artifact and actions/download-artifact are used to share artifacts between jobs
during the execution of a workflow. As such, it is not that surprising that the
Actions belonging to this provider are used in 67.14% of the steps, 95.44% of
the workflows, and 98.83% of the repositories in the latest considered snapshot.

Table 1 also reveals that the Actions provided by docker/ are the second
most widely used in the latest snapshot, occurring in 5.06% of the steps, 4.81%
of the workflows and 7.64% of the repositories. Examples of widely used Docker
Actions are docker/login-action to login against a Docker registry, docker/build-
push-action to build and push Docker images, docker/setup-buildx-action to setup
a Docker buildx environment, and docker/setup-qemu-action to setup QEMU, an
open source machine virtualizer.

Providers not belonging to the top 10 of Table 1 are still contributing widely-
used Actions. They account for 2,861 Actions (compared to only 69 Actions
coming from the top 10 providers), and are used by 19.65% of the steps in
nearly half of the repositories (48.33%) in the latest snapshot.

14

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 st
ep

s

actions/checkout
actions/setup-*
other actions/*

Figure 5: Evolution of the proportion of steps using Actions from the actions/ provider.

Since the actions/ provider accounts for the majority of the most widely
used Actions, we quantified the evolution of the proportion of steps using these
Actions. It should be noted that, over time, we observed in our dataset 32
different Actions belonging to the actions/ provider, of which 26 are still being
used in the latest considered snapshot. Figure 5 shows the evolution of the
proportion of Actions provided by actions/, distinguishing between the most
widely used actions/checkout, the 8 Actions of the form actions/setup-x (e.g.,
setup-node or setup-python), and the 23 remaining Actions provided by actions/
(e.g., cache, upload-artifact and download-artifact).

We also observe that from 83.6% (December 2019) to 69.7% (September
2022) of the steps are using Actions from the actions/ provider, the checkout
Action being used by 36% of the steps in the last snapshot, the 8 Actions of the
form actions/setup-x by 16.6% of the steps, and the 23 remaining Actions from
actions/ by 17.1% of the steps. This confirms the uneven distribution of Action
reuse in steps, mostly concentrated on a few Actions provided by GitHub [6].

Summary: Using Actions is common practice in workflows. More than
60% of the steps are using an Action. Nearly all repositories and work-
flows have at least one step using an Action. A few Actions concentrate
most of this reuse. Actions provided by GitHub account for more than
two thirds of this reuse.

RQ2 How frequently are Actions and workflows updated?
In RQ1 we found that relying on reusable Actions is common and that a

limited number of Actions concentrate most of the reuse. RQ2 aims to identify
how frequently workflows and Actions are updated, which is a preliminary step
needed to assess the outdatedness of workflows relying on Actions.

Detecting how frequently a workflow is updated is easy since our dataset con-
tains monthly snapshots of the workflow files for all the considered repositories.

15

On the other hand, detecting when an Action is updated is more challenging.
Since Actions are developed in public GitHub repositories, we have access to all
the commits made to develop and update an Action. However, not all commits
lead to a new distributable release of the corresponding Action. As a conse-
quence, we relied on the GitHub API for “releases”15 to detect when an Action
has been updated. However, not all Actions use GitHub’s release system: out
of the 3,519 distinct Actions identified in RQ1, we were able to find releases for
2,811 Actions (i.e., 79.9%), accounting for a total of 28,889 releases.

In the latest considered snapshot, the 708 Actions without known releases are
used by 1,512 steps, 997 workflows, and 704 distinct repositories. Proportionally,
this represents only 0.71% of the steps, 1.9% of the workflows, and 3.1% of the
repositories making use of an Action, even though these Actions account for
20.1% of the distinct Actions we found in workflow steps.

1 2 3 4 5 6 7 8 9 10 11 12+
number of releases

0.0

0.1

0.2

0.3

0.4

0.5

pr
op

or
tio

n
of

 A
ct

io
ns

19.0%

3.0% 2.5%

21.2%

13.6%
10.2%

7.3% 6.3% 5.5% 4.0% 4.1% 3.3%

Figure 6: Proportion of Actions in function of their number of releases.

Based on this data, we found Actions to have 10.3 releases on average (2,
4 and 10 respectively for the 25th, 50th and 75th percentiles). Figure 6 shows
the proportion of Actions in function of their number of releases. We observe
that 19% of the Actions in our dataset have a single release, while on the other
extremity 21.2% have 12 or more releases. Around half of all Actions have 5 or
more releases. To assess the frequency of updating Actions we computed the
time between consecutive releases. It takes, on average, 38 days to release a
new version of an Action, and respectively 0.3, 5, and 32 days for the 25th (i.e.,
Q1), 50th (i.e., median) and 75th (i.e., Q3) percentiles.

For each monthly snapshot during the observation period we identified the
workflows that were updated, by checking if their contents differed w.r.t. the
snapshot of the preceding month. We also identified the Actions that were
updated, by checking for new available releases during the considered month.
Figure 7 shows the monthly proportion of Actions and workflows having been

15https://api.github.com/repos/{owner}/{repo}/releases

16

https://api.github.com/repos/{owner}/{repo}/releases

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n

repositories
workflows
Actions

Figure 7: Monthly proportion of Actions and workflows having been updated and of reposi-
tories having updated a workflow.

updated as well as the monthly proportion of repositories having updated a
workflow. We observe a decreasing trend for all curves. This is a consequence of
an increase in the total number of considered Actions, workflows and repositories
(see Figure 2 and Figure 4) combined with an increasing number of inactive
Actions and workflows that are no longer updated. Each month, on average,
19.5% of the Actions are updated (median is 16.1%), 27.1% of the workflows
are updated (median is 24.1%), and 32.1% of the repositories have updated a
workflow (median is 29.1%). During the last observed month, 12.5% of the
Actions released a new version, while 16.1% of the workflows were updated, and
19.0% of the repositories updated a workflow.

Summary: Actions and workflows are continuously updated. Half of
the Actions have 5 or more releases. It takes 38 days on average to
release a new version of an Action. Each month, one Action out of five
and one workflow out of 4 are updated, and one repository out of three
updates a workflow.

RQ3 Which versioning practices are being used in GHA?
RQ2 showed that Actions are frequently updated. As such, workflows mak-

ing use of these Actions are prone to rely on older releases of these Actions.
As explained in Section 3.1, when a workflow step uses a predefined Action, in
addition to specifying the name of the repository providing the Action, it should
use an anchor to specify which version of the Action should be selected. We
also explained that the two recommended ways by GitHub to specify anchors
are by using either a SemVer-compatible versioning scheme (e.g., v2 or v1.2.3)
implemented through git tags, or by relying on a unique immutable commit
hash (e.g., @753c60e0...) to avoid malicious actors to override the specified
version (which is possible with mutable git tags). These two recommendations

17

being contradictory, RQ3 aims to identify which versioning practices are actu-
ally followed for Actions and step anchors.

We started by looking at how releases of Actions are specified. To do so, we
manually inspected the releases of a few hundred randomly selected Actions to
identify which versioning schemes were used. Based on this qualitative analysis
three main categories naturally emerged: component-based version numbers
(e.g., v1.2 or 1.2.3-alpha), date-based versions (e.g., 20210913) and commit
hashes (e.g., 2bccd0e0...). We subdivided the category of component-based
version numbers based on the number of components being specified. We defined
regular expressions to match the different categories, and applied them on all
Action releases of our dataset. All anchors that did not fit into one of the
aforementioned categories (e.g., latest or alpha) were grouped together in the
“other” category, which only contained 0.51% of the Actions (on average).

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 A
ct

io
ns

1 component
2 components
3 components
4+ components

date
hash
other

Figure 8: Evolution of the proportion of Actions in function of their versioning scheme.

Figure 8 shows the evolution of the monthly proportion of Actions in func-
tion of the identified versioning scheme. For each month and each Action, we
classified its versioning scheme based on its latest version released during the
month. We observe that the most widely followed versioning scheme is the
component-based one. In the last month of the observation period, it is used by
99.7% of the Actions. In particular, the 3-component based notation is used by
89.7% of the Actions. This suggests that GitHub’s recommendation to adopt a
SemVer-based notation is widely followed.

We applied the same methodology to identify the versioning practices fol-
lowed in workflows that use Actions in some of their steps. A manual investiga-
tion allowed us to identify the same categories of versioning schemes as before.
The main differences were that date-based versions were not used in steps, and
that the “other” category mostly contains branch names (e.g., master or main).

Figure 9 shows the monthly proportion of workflow steps using an Action,
grouped by category of versioning scheme used by the anchor. We again ob-
serve that component-based notations are the most widely used, accounting for
92.7% of the anchors used in the latest snapshot. In contrast to the previous

18

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 st
ep

s 1 component
2 components
3 components
4+ components
hash
other

Figure 9: Monthly proportion of steps using an Action, grouped by the versioning category
used in the anchor.

analysis, however, a minority of the steps are using the 3-component notation
for their anchors (only 6.7% compared to 89.7% of the Actions that specified a
3-component version in their latest snapshot). Instead, the majority of the steps
(85.0%) are using a 1-component notation (e.g., @v3) to refer to a release of an
Action. These observations are in line with our observations in prior work [6],
with the notable difference that in that prior work we used a less recent dataset
focused on a single snapshot, and we did not distinguish between the number
of components used to refer to an Action in workflow steps.

The discrepancy between how versions are specified in Actions and how they
are used in steps is not really surprising. Indeed, assuming adherence to SemVer,
GitHub recommends specifying the version tag in anchors by including only the
major component (e.g., @v2 instead of @v2.1.3) in order to receive critical
fixes and security patches while still maintaining compatibility. At the same
time, GitHub recommends maintainers of reusable Actions to manually create
additional git tags for “keeping major (v1) and minor (v1.1) tags current to the
latest appropriate commit”. This explains why most of the steps are relying on a
1-component notation to refer to the 3-component versions of Actions. However,
this implies that Action maintainers must move some of these git tags each time
a new version of the Action is released (e.g., moving @v2 and @v2.1 tags from
release v2.1.3 to release v2.1.4 when new version 2.1.4 is released). Unless
automated, this introduces an additional burden on the maintainers. Forgetting
to update these tags when an Action releases a minor or a patch update implies
that the steps that depend on it do not automatically benefit from the bug and
security fixes provided by the update.

Coming back to Figure 9, perhaps the most surprising and worrisome finding
is that the most secure way of referring to the release of an Action, namely
through immutable commit hashes, is used by only 2.6% of the steps in the latest
snapshot, despite GitHub’s security recommendation to do so (see Section 3.1).
The use of commit hashes is currently the only way to enforce so-called pinned
dependencies, which is one of the scoring criteria used by the Open Source

19

Security Foundation (OpenSSF) to assess insecure open source projects.16 The
Node.js Security Working Group is planning to adopt these security practices
in 2023 [48], so we expect to see an increase in the proportion of steps using
hash-based anchors in the near future.

Summary: 9 out of 10 Actions use three-component versioning for their
releases, while less than 1 out of 10 steps uses such notation to refer to
an Action. 85% of all steps refer to Actions using single-component
versioning, suggesting a large adherence to GitHub’s recommendation to
use a SemVer-compatible way to depend on Actions. GitHub’s security
recommendation to use commit hashes to pin dependencies to Actions
used in workflow steps is rarely followed.

5. Research goal G2

In G1 we showed that relying on reusable Actions is common and that a
limited number of Actions concentrate most of the reuse (RQ1). We found
that Actions are continuously updated (RQ2) and that most Actions follow a
three-component versioning notation and that GitHub’s recommendation for
semantic versioning is widely followed (RQ3). This justifies the need to study
a second goal G2, aiming to understand to which extent workflows become
outdated in terms of the reusable Actions used by them (RQ4), and quantifying
this outdatedness in terms of two complementary metrics of technical lag (RQ5)
and opportunity lag (RQ6).

RQ4 How prevalent are outdated workflows?
The wide availability and reuse of Actions within workflows, combined with

the frequent release of new versions of Actions, increases the likelihood of work-
flows becoming outdated. Therefore, RQ4 aims to quantify how frequently
workflows are outdated with respect to the Actions they are using.

In order to identify which workflow steps are outdated with respect to a used
Action, we need to map the specified anchor to one of the releases available for
the corresponding Action. However, as observed in RQ3, there is a discrepancy
between how steps refer to Action versions and how Action releases specify their
versions. This discrepancy implies there is no one-to-one mapping between the
Action versions specified in steps and the versions specified in Action releases.
Indeed, steps usually refer to the major version of an Action by means of a 1-
component version number, while Action releases usually specify a 3-component
version number. Action maintainers have to define additional git tags with 1-
component version numbers as aliases for the latest corresponding release (e.g.,
git tag v2 would be introduced as an alias for latest version v2.1.3, and this

16https://securityscorecards.dev

20

https://securityscorecards.dev

alias would be updated to the next latest version v2.1.4 whenever it becomes
available).

Unfortunately, there is no historical data about git tags since the git ver-
sioning system does not store this in its history log. This makes it impossible
to identify which commit (and hence, which release) was targeted by a given git
tag at a given point in time. To circumvent this intrinsic limitation of git we
applied the following procedure. We first looked for an exact match between
the version specified in the anchor and one of the releases available in the cor-
responding snapshot of the targeted Action. If no exact match could be found,
and if the version category of the anchor was “component-based”, we identified
the highest available release by means of prefix matching (e.g., @v2 and @v2.3
would both be mapped to v2.3.4). This approach, whose threats to validity
are discussed in Section 7, allows us to simulate GitHub’s recommendation for
SemVer under the assumption that the corresponding git tags are created and
updated appropriately. Using this procedure we were able to map the versions
specified in anchors for 3,422,135 steps, corresponding to 92.6% of the steps
that were using an Action with known releases. Out of these steps, 347,510
(i.e., 10.15%) were mapped with an exact match and the remaining ones with
the above prefix-based matching approach.

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 o
ut

da
te

d
st

ep
s,

wo
rk

flo
ws

 a
nd

 re
po

sit
or

ie
s repositories

workflows
steps

Figure 10: Monthly proportion of repositories, workflows and steps using an outdated release
of an Action.

Figure 10 shows the monthly evolution of the proportion of repositories,
workflows and steps using an outdated release of an Action. We observe that
all curves exhibit a similar behaviour, with an average difference of around 21%
between steps and workflows, and of around 8% between workflows and repos-
itories. The proportion of outdated workflows (resp. steps) slowly decreased
from 85% (resp. 45%) in January 2020 to 39% (resp. 20%) in February 2022,
before jumping to 91% (resp. 72%) in April 2022. In the latest snapshot, 65.2%
of the steps, 80% of the workflows and 87.9% of the repositories are using an
outdated release of an Action.

Over the considered observation period, we observe 4 sudden increases in
the proportion of outdated steps, workflows and repositories, indicated by ver-

21

tical dashed lines. We manually looked at the steps that led to these increases
and found that the two increases indicated by a vertical red dashed line (in
January 2020 and April 2022) correspond to the release of a new major version
of actions/checkout (respectively, v2 and v3). Similarly, the two increases indi-
cated by a vertical green dashed line (in June 2020 and March 2022) correspond
to the release of new major versions (v2 and v3) for the Actions of the form
actions/setup-x. It is not surprising that major new releases for these Actions
have a huge impact on the proportion of outdated repositories and steps, since
Figure 5 revealed that these Actions account together for 52.6% of the reuse (in
the latest snapshot).

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 o
ut

da
te

d
st

ep
s,

wo
rk

flo
ws

 a
nd

 re
po

sit
or

ie
s repositories

workflows
steps

Figure 11: Monthly proportion of repositories, workflows and steps using an outdated release
of an Action, excluding steps using Actions from the actions/ provider.

Since the few Actions from the actions/ provider somehow “hide” the impact
of 2K+ other Actions used by steps, we repeated the analysis by excluding
steps using Actions from the actions/ provider. Figure 11 reports on the new
proportions, revealing that the proportion of outdated workflows (resp. steps)
is slightly increasing through time, going from 25.6% (resp. 14.1%) at the
beginning of the observation period to 46% (resp. 38.3%) in the latest snapshot.
Most of this increase can be explained by two distinct events in August 2021
and June 2022, indicated by vertical dashed lines. The first increase was due
to release 2.0.0 of codecov/codecov-action, leading 1,413 additional steps to
become outdated. The second increase was due to various Actions from the
docker/ provider that were updated nearly at the same time. For instance,
release v3.0.0 of build-push-action, and release v2.0.0 of login-action, setup-
buildx-action and setup-qemu-action caused 6,059 additional steps to become
outdated.

Summary: Nearly two thirds of the steps and four out of five workflows
are using an outdated release of an Action. Steps using Actions provided
by GitHub are responsible for most of the outdatedness. Excluding these
steps, more than one third of the steps and nearly half of the workflows
are using an outdated release of an Action.

22

RQ5 What is the technical lag of workflow steps?
In RQ4, we showed that most of the workflows are using an outdated release

of an Action. With RQ5, we aim to quantify the extent to which workflows are
outdated w.r.t. the Actions they are using. To do so, we rely on the concept
of technical lag, which quantifies the outdatedness of a (re)used version of a
software component by comparing it with an ideal version of this component
(e.g., a more recent, more stable or less vulnerable version). This concept was
formalised into a technical lag measurement framework for reusable software
components by Zerouali et al. [18], presenting how technical lag can be quan-
tified in terms of time, versions, bug or security issues, etc. RQ5 applies this
framework to compute, for all monthly snapshots, the technical lag of workflow
steps that (re)use Actions.

More specifically, we compute technical lag as the time difference (expressed
in months) between the release of an Action used by the step and the latest
available release of this Action in the considered snapshot.17 Intuitively, this
corresponds to the number of months of development effort that is “missed” by
using an outdated release of an Action rather than the more recent one.

Table 2: Example of technical lag for steps in the test.yml workflow from the acm309/putongoj
repository, taken on 1 September 2022.

uses: specification of step selected latest technical lag

1 actions/checkout@v3 v3.0.2
22-04-21

v2.4.2
22-04-21 up-to-date

2 actions/setup-node@v3 v3.4.1
22-07-14

v3.4.1
22-07-14 up-to-date

3 supercharge/redis-github-action@1.4.0 1.4.0
21-12-28

1.4.0
21-12-28 up-to-date

4 supercharge/mongodb-github-action@1.7.0 1.7.0
21-11-16

1.8.0
22-08-26 9.4 months

5 pnpm/action-setup@v2.0.1 v2.0.1
21-04-24

v2.2.2
22-05-28 13.3 months

6 codecov/codecov-action@v2 v2.1.0
21-09-13

v3.1.0
22-04-21 7.3 months

Table 2 shows an analysis of the technical lag of the test.yml workflow
in the acm309/putongoj repository taken on 1 September 2022. This workflow
defines 8 steps, of which 6 are relying on an Action. The first two belong to the
actions/ provider and are referred to using the @v3 anchor, which points to the
highest available release of the corresponding Action, implying that they do not
have any technical lag. It is interesting to note that the highest version v3.0.2
of actions/checkout was released shortly before the latest version v2.4.2 that
essentially corresponds to a backport of the changes made in v3.0.2.

17Since backporting bug and security fixes to previous major branches is common practice
in ecosystems of reusable software components [15], we select the highest available release
instead of the latest one for Actions adhering to component-based versioning (e.g., version
v3.0.2 is preferred to v2.4.2 even if the latter was released later).

23

One step (number 6 in Table 2) refers to codecov/codecov-action@v2 which
points to an outdated release v2.1.0, implying that the used Action version has
a technical lag of 7.3 months with respect to the latest available release v3.1.0.
Three other steps (numbers 3, 4 and 5 in Table 2) use some Action through a
3-component anchor. In two of these cases, the corresponding Action release is
outdated since a higher version has been released more recently, leading to a
technical lag of 9.4 and 13.3 months, respectively.

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0

3

6

9

12

15

18

te
ch

ni
ca

l l
ag

 (i
n

m
on

th
s)

median
mean

Figure 12: Evolution of the distribution of technical lag for outdated steps. The shaded area
corresponds to the interval between the 25th and 75th percentiles.

Figure 12 shows the monthly evolution of the distribution of technical lag for
outdated steps. The blue line indicates the median technical lag expressed in
months while the dashed orange line indicates the mean lag value. The shaded
area corresponds to the interval between the 25th and 75th percentiles. We
observe that the median and average technical lag value is steadily increasing
from around 3 months to around 14 months in March 2022. At the end of
the observation period, the median and mean technical lags are of 5.0 and 7.0
months, respectively.

We also observe a strong decrease in March, April and May 2022, correspond-
ing to the release of a new major v3.0.0 version for the various actions/setup-x
Actions in March 2022 (indicated by a vertical dashed green line), and for ac-
tions/checkout in April 2022 (indicated by a vertical dashed red line). While
one may expect the technical lag to increase when new versions are released,
especially in the case of a major version, we observe the opposite here, for two
different reasons:

1. The first reason is that we report on the distribution of technical lag for
steps that are outdated only. The new major releases led a plethora of steps
using them with a @v2 anchor to start contributing to the distribution of
technical lag with a “low” lag value. For example, 17,052 steps using one
of the actions/setup-x Actions started to contribute to the distribution of
technical lag with an average value of 1.2 months, whereas the distribution
was driven so far by 34,327 other steps with an average of 14.2 months.

24

2. The second reason is that new versions for the v2 branch were released
briefly after v3.0.0, incidentally leading the technical lag of steps using
@v2 to decrease. For example, versions v2.4.1 and v2.4.2 of action-
s/checkout were released in April 2022, nearly at the same time as versions
v3.0.1 and v3.0.2. This led the technical lag of 51,223 steps to lower
from 4 months to less than a day for the snapshot of May.

Since most of the technical lag is explained by steps using Actions from
the actions/ provider, we repeated the analysis by excluding the steps using
these Actions. Figure 13 shows a continuously increasing technical lag for the
remaining steps, going from an average of 1.3 month up to 9.8 months in May
2022. In the latest considered snapshot, the median and mean technical lag are
of 7.3 and 8.3 months, respectively. This means that half of the outdated steps
are using an Action version that is outdated w.r.t. the latest one for at least 7.3
months. A quarter of the outdated steps even lag behind for more than a year.

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0

3

6

9

12

15

18

te
ch

ni
ca

l l
ag

 (i
n

m
on

th
s)

median
mean

Figure 13: Evolution of the distribution of technical lag, excluding outdated steps using
Actions from the actions/ provider. The shaded area corresponds to the interval between the
25th and 75th percentiles.

We also observe a sudden increase in May 2022 followed by a slightly higher
decrease in June 2022, indicated by the vertical dashed lines. A manual inspec-
tion revealed that these variations are due to two separate and unrelated events.
The increase in May 2022 is mostly due to the new v3.0.0 and v3.1.0 releases
of codecov/codecov-action (see also the example presented in Table 2). While
most of the steps using this Action were already outdated at that time, these
newer releases further increased the technical lag from an average of 4.5 months
to 10.1 months. The decrease we observe in June 2022 is a consequence of the
docker/ provider having released a new major version for several of its widely
used Actions, as explained in RQ4. This led the number of steps contributing
to the technical lag distribution to increase from 285 to 6,344. However, at
the same time, their average induced lag decreased from 12.8 to 3.8 months,
explaining why the overall distribution exhibits a decreasing trend.

25

Summary: Technical lag of outdated steps is continuously increasing.
Most of the technical lag is explained by outdated steps using Actions
provided by GitHub. Half of the outdated steps using other Actions
are using a version that is lagging behind the latest one for at least 7.3
months.

RQ6 What is the opportunity lag of workflow steps?
The technical lag of Actions, as used in RQ5, helps to quantitatively assess

the extent to which steps are outdated with respect to the used Actions, by
comparing how long an Action version used in a step lags behind the latest or
highest available version. A high technical lag may signal workflow maintainers
the need to update the Action versions used in steps, assuming this is possible.

observation
datev1.3.0

 v1.3.1
(2022-08)

v1.2.1
(2022-01)

v1
(2020-04)

v2
(2020-11)

technical lag

technical lag
opportunity lag

opportunity lag

prepare-maven-build
@v1.2.1

query-tag-action
@v1

step relying on

Figure 14: Illustration of the technical lag and opportunity lag for two outdated steps.

However, technical lag does not take into account the time during which such
an update could have been adopted, and can therefore remain high regardless
of how long a newer release of the Action has been available (which could range
from a couple of days to several years). Consider for example the two situa-
tions illustrated in Figure 14, on the observation date of 1 September 2022. In
the first situation, workflow release.yml in repository schemacrawler/schema-
crawler contains the instruction uses: sualeh/prepare-maven-build@v1.2.1
to rely on some Action. Version 1.2.1 of this Action was released in January
2022, and it remained the latest available release until 31 August 2022, when
two new versions 1.3.0 and 1.3.1 were released. These new versions induce
a technical lag of nearly 8 months even though they were released only a sin-
gle day before the observation date of 1 September 2022. This means that the
workflow maintainer only had one day available (w.r.t. the observation date) to
seize the opportunity to update the workflow to reduce its lag.

26

The second situation shows the package-beta.yml workflow of repository
xyoye/dandanplayforandroid. This workflow uses jimschubert/query-tag-action@v1.
Version v1 of this Action was released in April 2020 and remained the latest
available release until November 2020, when version v2 was released. The tech-
nical lag for this step on the observation date of 1 September 2022 is therefore
nearly 8 months as well, as in the first situation. The main difference, however,
is that the new release has been available for 22 months, leaving plenty of time
for the workflow maintainer to seize the opportunity of updating the step to
refer to this newer release.

Even though the technical lag is roughly the same in both situations, they
drastically differ in the timeframe during which the workflow maintainers had
the opportunity to update the outdated steps. To capture the difference between
both situations, we introduce a variant of technical lag, called opportunity
lag , to quantify the time period during which a workflow maintainer could
have updated an outdated step to a more recent version of an Action. More
specifically, we compute the opportunity lag for an outdated step at time t as
the difference in time between t and the first release of the Action that caused
the step to become outdated. According to this definition, the opportunity lag
is one day in the first situation, and 22 months in the second situation.

From a pure definition point of view the technical lag (RQ5) and opportu-
nity lag (RQ6) capture different aspects of step outdatedness, and the previous
example illustrates their complementarity. In order to determine whether both
metrics are actually correlated, we computed both variants of lag measurement
for all the outdated steps in the latest consider snapshot. We excluded steps
using Actions from the actions/ provider for the same reasons as in RQ4 and
RQ5.

The heatmap in Figure 15 shows the number of steps in function of their
technical and opportunity lag. We observe that there are plenty of steps with
a similar technical lag and opportunity lag (they are found on or close to the
diagonal). At the same time many steps have either a high technical lag and
low opportunity lag (shown on the bottom right of the heatmap), or vice versa
(shown on the top left). The weak Pearson correlation (r = 0.39) and moderate
Spearman correlation (ρ = 0.49) suggest that technical lag and opportunity lag
are complementary metrics to quantify outdatedness of workflows w.r.t. the
Actions used by them.

Still excluding the Actions from the actions/ provider, we computed the
monthly evolution of the distribution of opportunity lag for all outdated steps in
all considered snapshots. Figure 16 shows this evolution, revealing a continuous
growth until June 2022, with a median value going from 0.5 months at the
beginning of the observation to 9.3 months in May 2022.

We observe a sudden decrease in June 2022, indicated by a vertical dashed
line. This decrease is the consequence of the new major releases of various Ac-
tions provided by docker/ that caused thousands of steps to become outdated
(see RQ4), inducing an opportunity lag of a few weeks for them in June 2022.
From July onwards, the opportunity lag started to increase again, with a median

27

0 2 4 6 8 10 12 14 16 18 20 22 24

technical lag (in months)

0
2

4
6

8
10

12
14

16
18

20
22

24
op

po
rtu

ni
ty

 la
g

(in
 m

on
th

s)

100

101

102

103

nu
m

be
r o

f s
te

ps

Figure 15: Technical lag versus opportunity lag for outdated steps in the latest snapshot,
excluding steps using Actions from the actions/ provider.

and mean value respectively reaching 4.9 and 9 months at the end of the obser-
vation period. Phrased differently, this means that the maintainers of half of the
outdated steps had more than 4.9 months of opportunity to update the versions
of the Actions they used, but did not seize this opportunity. This duration even
reaches more than 13.6 months for a quarter of the outdated steps.

If is difficult to know whether maintainers did not update these Actions on
purpose. On the one hand, continuing to use outdated Actions incurs a higher
risk of having bugs and security issues in them, but on the other hand updating
to a more recent release might lead to backward incompatible changes or in-
compatibilities. Moreover, nothing indicates that the maintainers are actually
aware of the outdatedness of their workflows, nor of the risks they may be facing
as a consequence of this.

Summary: As a complementary metric to technical lag, the opportunity
lag measures how long an outdated version of a reusable component has
been used, while a newer version could have been used instead. The
opportunity lag of outdated Actions used in workflow steps tends to
increase over time. On average, maintainers of outdated steps have had
the opportunity to update them for 9 months, but have not done so.

28

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul
0

3

6

9

12

15

18

op
po

rtu
ni

ty
 la

g
(in

 m
on

th
s) median

mean

Figure 16: Evolution of the distribution of opportunity lag, excluding outdated steps using
Actions from the actions/ provider. The shaded area corresponds to the interval between the
25th and 75th percentiles.

6. Discussion

6.1. The GitHub Actions software ecosystem
Software component ecosystems are composed of large numbers of reusable

interconnected software components that are maintained by large and often
geographically distributed contributor communities. Examples of such ecosys-
tems are package dependency networks of reusable software libraries for differ-
ent programming languages (e.g., npm for JavaScript, Maven for Java, PyPI
for Python, Cargo for Rust). Software applications can reuse these libraries by
specifying dependencies towards specific (version ranges of) releases of those
libraries. Despite their extreme usefulness for the software development com-
munity in the large, software library ecosystems have been shown to face nu-
merous challenges related to dependency management [8, 9, 10], security vul-
nerabilities [11, 12, 13], backward compatibility [14, 15, 16], outdated compo-
nents [17, 18, 19], deprecated and obsolete components [20] and loss of core
developers [21].

GHA can be regarded as an ecosystem that bears many similarities with soft-
ware library ecosystems. Actions are widely available for reuse, are developed
and distributed by a large community of providers, and are used in automation
workflows that specify dependencies to specific versions (releases) of these Ac-
tions. By analogy with software library ecosystems, it is therefore interesting to
study the evolutionary characteristics of the GHA ecosystem, and the challenges
that come with its use.

In this article, we have been able to confirm that GHA exhibits similar evo-
lutionary characteristics (continuing growth and continuing change) as software
library ecosystems [7]. For instance, Figures 2 and 4 reveal its continuing growth,
Figure 7 highlights its continuing change, and Figure 3 shows that Actions are
widely reused in workflow steps, forming a large dependency network.

29

With regard to the challenges that come in ecosystems of reusable compo-
nents, we analysed the outdatedness of workflows with respect to the latest or
highest available release of the Actions they use. RQ4 revealed that four out of
five workflows and nearly two thirds of the steps are using an outdated Action
release. We relied on the concept of technical lag to assess to which extent
reusable Actions used in workflows are outdated. RQ5 showed that half of the
outdated workflow steps are using a version that is lagging behind the latest one
for at least 7.3 months. In RQ6 we also proposed and evaluated the opportunity
lag as a complementary metric to quantify how long workflow steps have had
the opportunity to update the Actions they use. We found that maintainers
of outdated steps have had the opportunity to update them for 9 months, but
have not done so. All these findings confirm that the GHA ecosystem is suf-
fering from the outdatedness induced by reusable Actions on workflows, to an
extent that is similar to major software library ecosystems [47, 17].

In future work, we aim to study other challenges that the GHA ecosystem
is facing, inspired by the many available studies about technical challenges in
software library ecosystems, such as issues related to dependency management,
security vulnerabilities, backward compatibility, deprecated and obsolete com-
ponents, and loss of core developers.

Recommendation: GHA constitutes a software component ecosystem
in its own right, that is in need of further study of numerous challenges,
beyond the workflow outdatedness that has been studied in the present
article.

6.2. Semantic Versioning practices
GitHub recommends developers and maintainers of Actions to number their

releases using a three-component version number, and RQ3 revealed that this
recommendation is widely followed. More specifically, we observed that most
of the workflow steps rely on the single-component version notation (e.g., @v2)
to refer to Action releases. This suggests that workflow maintainers gener-
ally assume that Actions adhere to SemVer. Under this assumption, breaking
changes are expected to be limited to major releases. Therefore, using a single-
component notation allows workflow maintainers to benefit from critical fixes
and security patches in Actions while still retaining compatibility. However,
prior research on software library ecosystems [42, 14] has observed that there is
no guarantee that reusable components follow the semantics of SemVer even if
they adhere to its syntax. This implies that breaking changes can still manifest
themselves in minor or patch releases. The same may be true for the GHA
ecosystem and therefore deserves a more in-depth analysis.

Unlike the dependency version constraint mechanisms provided by library
ecosystems that advocate the use of SemVer (e.g., npm or Cargo), GitHub does
not provide any appropriate way to specify and resolve version ranges in step
anchors (e.g., ^1.2.3 or [1.2.3-2.0.0[), to refer to specific ranges of Action

30

releases. Instead, GitHub recommends Actions maintainers to create additional
git tags for “keeping major (v1) and minor (v1.1) tags current to the latest
appropriate commit”. To some extent, this recommendation circumvents the
need for a genuine SemVer-based version specification and resolution mecha-
nism. However, since this recommendation requires version resolution to be
emulated through git tags, it comes with multiple major flaws:

1. Action maintainers have to create and move these git tags each time a
new Action release is published. Unless automated, this introduces an
additional burden on the developers.

2. There is no guarantee that these tags are moved consistently. Checking
whether a partial version specification (e.g., v1) matches the latest version
(e.g., v1.2.3) requires to compare the commit hashes targeted by these
two tags.

3. Moving git tags should be considered as an anti-pattern. The official
git manual even considers re-tagging as “an insane thing”.18 To make
things even worse, git does not store any historical data about tags in its
history log, making it impossible a posteriori, to keep track of the commits
targeted by a tag.

In summary, it is surprising that GitHub, the largest git-based social coding
platform, recommends versioning practices that contradict the intended and
expected use of git tags. We share the viewpoint of other software practitioners
to avoid the use of tags to simulate SemVer for Action releases and to advocate
a built-in version resolution mechanism supporting range notations for step
anchors.19 As has been previously observed in software library ecosystems [47,
11], such a combination of SemVer with an appropriate dependency constraint
mechanism is likely to reduce the outdatedness of workflows as well as their
exposure to security vulnerabilities in the Actions they use.

Recommendation: Action and workflow maintainers would benefit
from a consistent SemVer-based versioning policy and an appropriate
version resolution mechanism supporting range notations.

6.3. Security impact of outdated Actions
Our empirical results highlighted that the majority of workflows make use of

reusable Actions, that these Actions are continuously updated (RQ2) and that
most workflows exhibit technical lag with respect to the Actions they use (RQ5
and RQ6). It has been shown for software library ecosystems that relying on
an outdated dependency incurs a higher risk of having security vulnerabilities,

18https://git-scm.com/docs/git-tag#_on_re_tagging
19See https://github.com/actions/toolkit/issues/214 for an interesting discussion on

these topics, notably involving one of the Action engineers at GitHub.

31

https://git-scm.com/docs/git-tag#_on_re_tagging
https://github.com/actions/toolkit/issues/214

and library maintainers may not even be aware that there are exposed to a
vulnerability [25, 23, 24].

The same holds for GHA workflows relying on outdated Actions. According
to GitHub Security Lab, “a compromised or malicious action could potentially
disrupt automatic workflows of your repository” and “all options [to refer to
an Action with an anchor] are a tradeoff between guaranteed supply chain in-
tegrity and auto-patching of vulnerabilities in dependencies” [51]. Qualitative
and quantitative analysis has confirmed that security concerns are among the
major challenges for developers when automating workflows on GitHub [36, 37].
Several respondents to an interview about the use of CI/CD tools [32] expressed
security concerns due to the ability to rely on third-party Actions in workflows:

• “you need to implement a whole ecosystem of security constraints because
you can potentially be running arbitrary third-party code in your data cen-
ter, so you need to make sure that you’ll lock down that environment to
make sure that the environment itself is actually secure.”

• “It’s a major security concern because, from that automation you can ba-
sically run any code on it.”

• “Most of the GitHub Actions are kind of community ran on open source
repositories. That makes me very nervous of using them because someone
could push something malicious to the Action plugin which gets picked
up automatically by default and then is ran on my project silently in the
background.”

Multiple cases of security issues with potentially disastrous consequences
have been reported for GHA. Examples include manipulating pull requests to
steal arbitrary secrets [52], injecting arbitrary code with workflow commands,20

or bypassing code reviews to push unreviewed code [53]. A developer we talked
to specifically mentioned “You can open a pull request, build the package, and
then we will deliver it. And when you do that from a pull request, there are
issues with the security considerations about the credentials, because anyone
could modify workflows or inject code, get access to the credentials and then
access to the upload process. [...] When it’s open to everyone, you need to be
careful.”

There are also several known examples of Action releases suffering from se-
curity issues for which fixes have been made available in newer releases. We refer
the reader to the GitHub Advisory Database that started to support reusable
Actions in August 2022. For instance, hashicorp/vault-action has a known secu-
rity vulnerability for all versions prior to 2.2.0.21 All workflows relying on a
vulnerable release of this Action and making use of multi-line secrets are exposed
to the high security risk of having these secrets revealed in the output log. While
a fix has been released in version 2.2.0 in May 2022, one out of three workflows

20https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
21https://github.com/advisories/GHSA-4mgv-m5cm-f9h7

32

https://packetstormsecurity.com/files/159794/GitHub-Widespread-Injection.html
https://github.com/advisories/GHSA-4mgv-m5cm-f9h7

in the September 2022 snapshot of our dataset still uses a compromised version
of this Action. Another example is azure/setup-kubectl whose versions v2 and
lower suffer from a vulnerability that is fixed in v3.22 Although version v3 of
the Action was released in June 2022, 29 out of the 34 workflows using it in
our dataset (ending in September 2022) are still exposed to the vulnerability
because they have not been updated to use v3.

Dependency monitoring and security monitoring tools (such as Renovate-
bot and GitHub’s Dependabot) that keep track of the Action versions used and
that warn workflow maintainers when new versions of these Actions are released,
can help to reduce the outdatedness and exposure of workflows to security vul-
nerabilities. Such tools have been proven to be effective in software library
ecosystems, leading projects to update their dependencies 1.6x more frequently
than projects that did not use them [39].

Despite the addition of support for GHA to Dependabot in June 2020, the
addition of alerts for vulnerable Actions in August 2022, and the ability to
propose automatic updates for these Actions since November 2022, only 5.0%
of the repositories in our dataset have configured Dependabot, and only 3.1%
use it for monitoring Actions in workflows.

Another potential source of compromised security lies in the fact that the ma-
jority of workflows are using SemVer practices to refer to reused Actions. Since
these practices are based on using mutable git tags, malevolent actors having
gained access to a repository hosting an Action could delete tags or move them
to point to a compromised commit [54]. GitHub announced in its roadmap
to address this issue by supporting immutable Actions. 23 In the meanwhile,
GitHub recommends workflow developers to implement security hardening by
using unique commit hashes to refer to releases of Actions since “it is currently
the only way to use an Action as an immutable release”. 24 As such, this mech-
anism currently constitutes “the safest for stability and security”, as it “helps
mitigate the risk of a bad actor adding a backdoor to the Action’s repository, as
they would need to generate a SHA-1 collision for a valid Git object payload”.
This use of immutable commit hashes does not exclude using automated depen-
dency updates by Dependabot or Renovatebot. To do so, it suffices to add a
comment after the commit hash to indicate which release the hash refers to.

Our findings highlight an urgent need to increase the awareness of workflow
maintainers to limit the use of vulnerable outdated Actions, for exemple by re-
sorting to automated security and dependency monitoring tools. The security
risk induced by relying on reusable Actions is further increased by the fact that,
in addition to allowing to use Actions in workflows, GHA also allows to reuse
workflows within a workflow,25 as well as to reuse Actions within composite

22https://github.com/advisories/GHSA-p756-rfxh-x63h
23https://github.com/github/roadmap/issues/592
24https://docs.github.com/en/actions/security-guides/security-hardening-for-

github-actions#using-third-party-actions
25https://docs.github.com/en/actions/using-workflows/reusing-workflows

33

https://github.com/advisories/GHSA-p756-rfxh-x63h
https://github.com/github/roadmap/issues/592
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/using-workflows/reusing-workflows

Actions.26 These two additional reuse mechanisms imply that workflow main-
tainers not only need to monitor and manage the Actions they use directly in
their workflows, but they also need to consider the Actions they use transitively
through reusable workflows and composite Actions. To do this, maintainers
are currently left on their own, since dependency monitoring tools currently
only consider Actions that are directly used in workflows, while ignoring their
transitive dependencies.

Recommendation: Awareness needs to be increased among workflow
maintainers to use dependency and security monitoring tools to limit the
use of insecure outdated Actions. These tools should be improved to take
into account the transitive use of Actions by workflows.

6.4. Beyond the GitHub Actions ecosystem
The exposure of GHA to the well-known issues that software library ecosys-

tems are known to face is worrisome because these issues will not remain limited
to the GHA ecosystem but may also affect other software ecosystems. This sit-
uation is depicted in Figure 17.

use

workflows

use
software

repositories

developed in

Actions

software
libraries

software library ecosystems

depend on

depend on

publish

use

GitHub Actions
ecosystem

reuse

Docker
images

use

Figure 17: Interweaving of the GHA ecosystem and software library ecosystems.

Consider for example the case of some Action that is affected by a secu-
rity vulnerability. This vulnerability may compromise all the workflows using
the affected Action. Next, it may also compromise the software repositories in
which these workflows are executed, leading an attacker to gain access to some
of these repositories and to alter their code. By extension, attackers may create
new compromised releases of the software projects being developed in the repos-
itories, and publish them to some library registry. In turn, these libraries may

26https://docs.github.com/actions/creating-actions/creating-a-composite-action

34

https://docs.github.com/actions/creating-actions/creating-a-composite-action

affect all the dependent libraries that use them, and so on. For example, the
dawidd6/action-download-artifact Action, used by hundreds of workflows, was
found to expose workflows using it to code injection attacks.27 While we are
not aware of compromised library releases having been published to library reg-
istries because of this vulnerability, we would not be surprised to learn it did
actually happen.

Conversely, the GHA ecosystem may be affected by issues coming from other
ecosystems, as illustrated in Figure 17. Indeed, GHA allows developers to create
Actions in three different ways, each of them increasing the risk and exposure
to well-known issues:

1. A composite Action is defined through steps similar to those found in
workflows. It can therefore not only execute commands, but also make
use of other Actions, including other composite Actions. This opens the
door to a potential contamination of the composite Action by the problems
present in the Actions it uses.

2. A Docker Action executes the tasks described in a Docker image and the
packages that compose it. Even if the execution within a Docker container
is isolated from the execution of the workflow that uses it, the presence
of bugs or vulnerabilities in the packages that compose the Docker image
can compromise the Action that uses it. For instance, it has been shown
that all Debian-based Docker images on DockerHub, even including official
ones, contain several hundreds of packages with known vulnerabilities [45].

3. Finally, a JavaScript Action executes tasks implemented in JavaScript.
Such an Action can make direct or indirect use of reusable libraries dis-
tributed through package managers such as npm, thereby increasing the
attack surface of the Action. It has been shown that 15% of npm packages
have a direct dependency on a package with a known vulnerability, and
36.5% are transitively exposed to a known vulnerability [12].

This strong interweaving between GHA and other ecosystems is not without
practical consequences. Issues affecting either reusable libraries, Docker images,
Actions or workflows may cross the GHA ecosystem boundaries and propagate
to the software ecosystems it is interconnected with, leading to a substantially
increased exposure to vulnerabilities and other socio-technical health issues.

Specifically for composite and JavaScript Actions, it has been shown that
around 30% of these Actions have at least one high or critical security alert in
their dependencies [55]: “If your dependencies already are not up to date and
thus have security issues in them, how can we expect your action to be secure?”
As a consequence, dependency monitoring tools should be adapted for workflows
and Actions to take the cross-ecosystem transitive dependencies into account.

27https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-
cicd-pipeline-attacks

35

https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks
https://www.legitsecurity.com/blog/github-actions-that-open-the-door-to-cicd-pipeline-attacks

Recommendation: The GHA ecosystem is strongly interwoven with
other software component ecosystems. Issues affecting components in
any of these ecosystems may cross the ecosystem boundaries and prop-
agate to the connected software ecosystems. This calls for new cross-
ecosystem studies to assess how and to which extent Actions affect, or
are affected by, risks and issues related to component dependencies that
cross ecosystem boundaries. Tools that monitor dependencies should be
adapted to take into account these cross-ecosystem dependencies.

7. Threats to validity

We follow the structure recommended by Wohlin et al. [56] to discuss the
main threats to validity of our research.

Threats to construct validity concern the relation between the theory behind
the experiment and the observed findings. They can be mainly due to impre-
cisions in the measurements we performed. We detected the use of workflows
in GitHub repositories on the basis of the presence of a YAML file in their
.github/workflows folder. This approach leads to an overestimation since
the presence of a YAML file does not necessarily imply that the corresponding
workflow is actually being triggered and used. However, we are confident that
such workflows are indeed used in the vast majority of cases since there is little
practical reason to keep workflows in that folder without actually using them.

We also implicitly assumed that all steps defined in jobs, all jobs defined in
a workflow file, and all workflow files defined in a repository are equally impor-
tant. However, workflows, jobs and steps may be used for various purposes [6]
with different degrees of importance. It may be the case that some workflows
were just created to “play around” with GHA, that some jobs tend to be exe-
cuted more frequently (e.g., those making use of the matrix strategy), or that
some steps are only conditionally executed (e.g., those making use of the if
construct). As a consequence, we may have overestimated the importance of
some Actions used in these steps, jobs and workflows.

The last threat to construct validity stems from how we identified releases for
Actions. We explained in RQ2 that we relied on the GitHub API for “releases”
to detect when an Action has been updated. However, not all Actions are relying
on the release system. We could only obtain releases for 79.9% of the Actions of
our dataset, and we cannot claim that the list of releases we obtained for these
Actions is complete. Nevertheless, we are confident about the representativeness
of the identified releases since, as mentioned in RQ4, we managed to map 92.6%
of the versions used in steps to the releases of our dataset.

Threats to internal validity concern choices and factors internal to the study
that could influence the observations we made. The findings of RQ3 show that
there is a discrepancy between how versions are specified in Actions and how
they are specified in steps. This is a consequence of GitHub’s recommendation

36

to use SemVer-based anchors (i.e., @v2 or @v2.3) to refer to the latest avail-
able release within the specified major or minor branch. These version “aliases”
are usually made available through git tags. As explained in RQ4, there is no
historical data for git tags, making it impossible to identify the exact releases
that are targeted by them. As a result, we mapped component-based version-
ing notations used in steps to the highest available release of the corresponding
Actions using a prefix-based matching (e.g., @v2 is mapped to v2.3.4), emu-
lating the presence of appropriate git tags whenever an exact match cannot be
found. This optimistic way of mapping versions assumes that GitHub’s recom-
mendation to create and move git tags is followed consistently by all Actions for
which an exact match cannot be found. In cases where Actions do not define
these additional tags, or do not correctly move them (e.g., v2 points to v2.3.4
instead of v2.5.1), this possibly leads to an underestimation of the outdated-
ness of the steps using them. As a consequence, the findings reported in RQ4,
RQ5 and RQ6 should be considered as a lower bound of the actual situation of
outdatedness of workflows.

Another threat to internal validity relates to how we identified Actions used
in workflows. While we considered all the Actions being used in workflow steps,
we only considered the Actions being used directly and not those being used
transitively through composite Actions or reusable workflows, as explained in
Section 6. However, while composite Actions represent 11.7% of the Actions in
our dataset, they are only used by 2.2% of the steps using an Action in the latest
snapshot. Similarly, according to Decan et al. [6], only 0.9% of the workflows
are reusing another workflow. Moreover, 84.4% of these reused workflows are
located in the same repository as the calling workflow, implying that we did
actually take most of them into account when identifying the Actions used in
workflows.

Threats to conclusion validity concern the degree to which the conclusions
derived from our analysis are reasonable. Since our conclusions are mostly based
on quantitative observations, they are unlikely to be affected by such threats.

Threats to external validity concern whether the results can be generalized
outside the scope of this study. One such threat was our decision to limit the
analysis to active GitHub repositories having at least 100 stars and 100 com-
mits, in order to exclude abandoned, personal or experimental repositories [49].
This implies that we have no insight into how GHA is used in smaller or less
active repositories, nor on the more specific Actions that might be used in these
repositories (e.g., to publish personal GitHub pages or to compile LATEX files).

8. Conclusion

Since its public release in November 2019, GHA has become the dominant
CI/CD service on GitHub, only 18 months after its introduction. Its Market-
place of reusable Actions, and the amount of repositories and workflows using
such Actions, has been growing rapidly ever since. Given the high number of

37

GitHub repositories reusing Actions, the GHA ecosystem bears many similari-
ties to ecosystems of reusable software libraries (such as npm) that are known
to suffer from various issues related to dependency management.

Based on a dataset of nearly one million workflows obtained from 22K+
repositories between November 2019 and September 2022, we empirically stud-
ied workflows in GitHub repositories, focusing on two research goals.

Goal G1 provided quantitative insights in the prevalence of reusable Actions,
as well as their evolution over time in terms of update frequency and versioning
practices being used. We quantitatively observed that it is common for work-
flows to use Actions, and that a limited number of Actions concentrate most of
this reuse. We also found most Actions and workflows to be frequently updated.
We investigated the versioning practices used by workflows to refer to the Ac-
tions they use, and observed a discrepancy between using a three-component
and a single-component version notation to specify the releases of used Actions.

Goal G2 focused on the outdatedness of workflows in terms of the reusable
Actions used by them. We quantified to which extent workflows are outdated,
based on the technical lag metric, observing that most workflows are using an
outdated release of an Action, lagging behind the latest available one for several
months. We proposed the opportunity lag as a complementary way to measure
how long a reused Action has been outdated. We used this metric to reveal that
most workflows had the opportunity to update their used Actions for 9 months,
but did not.

These findings indicate that most of the workflows that use Actions depend
on outdated releases of those Actions, increasing their vulnerability risk. This
calls for a more rigorous management of Action outdatedness, as well as for
better policies and tooling to support it effectively. This is especially critical
since workflows using outdated Actions can not only affect the repositories in
which they are executed, but can also propagate beyond the boundaries of the
GHA ecosystem.

As future work, we aim to study other dependency-related challenges that
the GHA ecosystem is facing, and how and to which extent issues propagate to
and from the GHA ecosystem to other software ecosystems. We also aim to get
a better understanding on the changes occurring in the continuously evolving
Actions and workflows, and on the implications of these changes. To do so,
we plan to complement the quantitative evidence in this article with qualitative
insights about the awareness of outdated Actions, the reasons of being outdated,
and the perception of the security and other risks related to outdatedness.

Acknowledgments

This research is supported by the Fonds de la Recherche Scientifique - FNRS
under grant numbers MIS F.4515.23, O.0157.18F-RG43 and PDR T.0149.22,
and by ARC-21/25 UMONS3 supported by the Ministère de la Communauté
française – Direction générale de l’Enseignement non obligatoire et de la Recherche
scientifique.

38

References

[1] J. M. Costa, M. Cataldo, C. R. de Souza, The scale and evolution of co-
ordination needs in large-scale distributed projects: implications for the
future generation of collaborative tools, in: SIGCHI Conference on Human
Factors in Computing Systems, 2011, pp. 3151–3160.

[2] GitHub, Octoverse 2022: The state of open source software, https://
octoverse.github.com/2022/developer-community, [Online; accessed 7
December 2022] (2022).

[3] M. Fowler, M. Foemmel, Continuous Integration, https://martinfowler.
com/articles/originalContinuousIntegration.html, [Online; ac-
cessed 3 January 2022] (September 2000).

[4] M. Golzadeh, A. Decan, T. Mens, On the rise and fall of CI services in
GitHub, in: International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2022. doi:10.1109/SANER53432.2022.
00084.

[5] C. Chandrasekara, P. Herath, Hands-on GitHub Actions: Implement
CI/CD with GitHub Action Workflows for Your Applications, Apress, 2021.
doi:10.1007/978-1-4842-6464-5.

[6] A. Decan, T. Mens, P. R. Mazrae, M. Golzadeh, On the use of GitHub
Actions in software development repositories, in: International Conference
on Software Maintenance and Evolution (ICSME), IEEE, 2022. doi:10.
1109/ICSME55016.2022.00029.

[7] A. Decan, T. Mens, P. Grosjean, An empirical comparison of dependency
network evolution in seven software packaging ecosystems, Empirical Soft-
ware Engineering 24 (1) (2019) 381–416. doi:10.1007/s10664-017-9589-
y.

[8] A. Decan, T. Mens, M. Claes, An empirical comparison of dependency
issues in OSS packaging ecosystems, in: International Conference on
Software Analysis, Evolution and Reengineering (SANER), IEEE, 2017.
doi:10.1109/SANER.2017.7884604.

[9] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, E. Shihab, Why do
developers use trivial packages? An empirical case study on npm, in: Joint
Meeting on Foundations of Software Engineering (FSE), 2017, pp. 385–395.

[10] C. Soto-Valero, N. Harrand, M. Monperrus, B. Baudry, A comprehensive
study of bloated dependencies in the Maven ecosystem, Empirical Software
Engineering 26 (3) (2021) 45. doi:10.1007/s10664-020-09914-8.

[11] A. Decan, T. Mens, E. Constantinou, On the impact of security vul-
nerabilities in the npm package dependency network, in: International
Conference on Mining Software Repositories (MSR), 2018, pp. 181–191.
doi:10.1145/3196398.3196401.

39

https://octoverse.github.com/2022/developer-community
https://octoverse.github.com/2022/developer-community
https://martinfowler.com/articles/originalContinuousIntegration.html
https://martinfowler.com/articles/originalContinuousIntegration.html
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1007/978-1-4842-6464-5
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1145/3196398.3196401

[12] A. Zerouali, T. Mens, A. Decan, C. De Roover, On the impact of security
vulnerabilities in the npm and RubyGems dependency networks, Empiri-
cal Software Engineering 27 (5) (2022) 1–45. doi:10.1007/s10664-022-
10154-1.

[13] M. Alfadel, D. E. Costa, E. Shihab, E. Shihab, Empirical analysis of se-
curity vulnerabilities in Python packages, in: International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2021. doi:
10.1109/saner50967.2021.00048.

[14] A. Decan, T. Mens, What do package dependencies tell us about seman-
tic versioning?, IEEE Transactions on Software Engineering 47 (6) (2019)
1226–1240. doi:10.1109/TSE.2019.2918315.

[15] A. Decan, T. Mens, A. Zerouali, C. De Roover, Back to the past–analysing
backporting practices in package dependency networks, IEEE Transactions
on Software Engineering 48 (10) (2022). doi:10.1109/TSE.2021.3112204.

[16] C. Bogart, C. Kästner, J. Herbsleb, F. Thung, When and how to make
breaking changes: Policies and practices in 18 open source software
ecosystems, ACM Transactions on Software Engineering and Methodology
(TOSEM) 30 (4) (2021) 1–56.

[17] A. Decan, T. Mens, E. Constantinou, On the evolution of technical lag
in the npm package dependency network, in: International Conference on
Software Maintenance and Evolution (ICSME), IEEE, 2018, pp. 404–414.
doi:10.1109/ICSME.2018.00050.

[18] A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E. Constantinou,
G. Robles, A formal framework for measuring technical lag in component
repositories—and its application to npm, Journal of Software: Evolution
and Process 31 (8) (2019). doi:10.1002/smr.2157.

[19] T. Lauinger, A. Chaabane, C. B. Wilson, Thou shalt not depend on me,
Communications of the ACM 61 (6) (2018) 41–47. doi:10.1145/3190562.

[20] F. Cogo, G. Oliva, A. E. Hassan, Deprecation of packages and releases in
software ecosystems: A case study on npm, IEEE Transactions on Software
Engineering (2021). doi:10.1109/TSE.2021.3055123.

[21] G. Avelino, E. Constantinou, M. T. Valente, A. Serebrenik, On the aban-
donment and survival of open source projects: An empirical investigation,
in: International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), IEEE, 2019, pp. 1–12.

[22] M. Wessel, T. Mens, A. Decan, P. Rostami Mazrae, The github develop-
ment workflow automation ecosystems, in: Software Ecosystems: Tooling
and Analytics, Springer, 2023.

40

https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2021.3112204
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1002/smr.2157
https://doi.org/10.1145/3190562
https://doi.org/10.1109/TSE.2021.3055123

[23] R. G. Kula, D. M. German, A. Ouni, T. Ishio, K. Inoue, Do developers
update their library dependencies?, Empirical Software Engineering 23 (1)
(2018) 384–417. doi:10.1007/s10664-017-9521-5.

[24] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, X. Peng, Demystifying the
vulnerability propagation and its evolution via dependency trees in the npm
ecosystem, in: International Conference on Software Engineering (ICSE),
2022, pp. 672–684.

[25] J. Cox, E. Bouwers, M. C. J. D. van Eekelen, J. Visser, Measuring de-
pendency freshness in software systems, in: International Conference on
Software Engineering (ICSE), IEEE, 2015, pp. 109–118.

[26] A06:2021 – vulnerable and outdated components, Open Worldwide Appli-
cation Security Project (OWASP) (2021).
URL https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_
Components/

[27] O. Elazhary, C. Werner, Z. S. Li, D. Lowlind, N. A. Ernst, M.-A. Storey,
Uncovering the benefits and challenges of continuous integration practices,
IEEE Transactions on Software Engineering 48 (7) (2022) 2570 – 2583.
doi:10.1109/TSE.2021.3064953.

[28] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and pro-
ductivity outcomes relating to continuous integration in GitHub, in: Joint
Meeting on Foundations of Software Engineering (FSE), 2015, pp. 805–816.

[29] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs, and
benefits of continuous integration in open-source projects, in: International
Conference on Automated Software Engineering (ASE), IEEE, 2016, pp.
426–437.

[30] M. Shahin, M. A. Babar, L. Zhu, Continuous integration, delivery and de-
ployment: A systematic review on approaches, tools, challenges and prac-
tices, IEEE Access 5 (2017) 3909–3943.

[31] E. Soares, G. Sizilio, J. Santos, D. Alencar, U. Kulesza, The effects of
continuous integration on software development: a systematic literature
review, Empirical Software Engineering (2022).

[32] P. Rostami Mazrae, T. Mens, M. Golzadeh, A. Decan, On the usage, co-
usage and migration of CI/CD tools: A qualitative analysis, Empirical
Software Engineering 28 (2) (2023) 52. doi:10.1007/s10664-022-10285-
5.

[33] T. Kinsman, M. Wessel, M. A. Gerosa, C. Treude, How do software devel-
opers use GitHub Actions to automate their workflows?, in: International
Conference on Mining Software Repositories (MSR), 2021.

41

https://doi.org/10.1007/s10664-017-9521-5
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://doi.org/10.1109/TSE.2021.3064953
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5

[34] T. Chen, Y. Zhang, S. Chen, T. Wang, Y. Wu, Let’s supercharge the work-
flows: An empirical study of GitHub Actions, in: International Conference
on Software Quality, Reliability and Security Companion (QRS-C), IEEE,
2021.

[35] P. Valenzuela-Toledo, A. Bergel, Evolution of GitHub Action workflows,
in: International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), IEEE, 2022.

[36] S. G. Saroar, M. Nayebi, Developers’ perception of GitHub Actions: A sur-
vey analysis, in: International Conference on Evaluation and Assessment
in Software Engineering (EASE), ACM, 2023. doi:10.1145/3593434.
3593475.

[37] G. Benedetti, L. Verderame, A. Merlo, Automatic security assessment of
GitHub Actions workflows, in: Workshop on Software Supply Chain Of-
fensive Research and Ecosystem Defenses, ACM, 2022, pp. 37–45. doi:
10.1145/3560835.3564554.

[38] V. Kotovs, Forty years of software reuse, Sci. J. Riga Tech. Univ. 38 (38)
(2009) 153–160.

[39] S. Mirhosseini, C. Parnin, Can automated pull requests encourage soft-
ware developers to upgrade out-of-date dependencies?, in: International
Conference on Automated Software Engineering (ASE), 2017, pp. 84–94.
doi:10.1109/ASE.2017.8115621.

[40] M. P. Robillard, R. J. Walker, T. Zimmermann, Recommendation systems
for software engineering, IEEE Software 27 (2010) 80–86.

[41] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, S. Panichella, The evo-
lution of project inter-dependencies in a software ecosystem: The case of
Apache, in: International Conference on Software Maintenance (ICSM),
IEEE, 2013, pp. 280–289.

[42] S. Raemaekers, A. van Deursen, J. Visser, Semantic versioning and impact
of breaking changes in the Maven repository, J. Syst. Softw. 129 (2017)
140–158.

[43] J. M. Gonzalez-Barahona, P. Sherwood, G. Robles, D. Izquierdo-Cortazar,
Technical lag in software compilations: Measuring how outdated a soft-
ware deployment is, in: Int’l Conference on Open Source Systems (OSS),
Springer, 2017. doi:10.1007/978-3-319-57735-7_17.

[44] A. Zerouali, E. Constantinou, T. Mens, G. Robles, J. M. Gonzalez-
Barahona, An empirical analysis of technical lag in npm package depen-
dencies, in: International Conference on Software Reuse (ICSR), 2018.
doi:10.1007/978-3-319-90421-4_6.

42

https://doi.org/10.1145/3593434.3593475
https://doi.org/10.1145/3593434.3593475
https://doi.org/10.1145/3560835.3564554
https://doi.org/10.1145/3560835.3564554
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1007/978-3-319-57735-7_17
https://doi.org/10.1007/978-3-319-90421-4_6

[45] A. Zerouali, T. Mens, A. Decan, J. M. Gonzalez-Barahona, G. Robles, A
multi-dimensional analysis of technical lag in Debian-based Docker images,
Empir. Softw. Eng. 26 (2021).

[46] J. M. Gonzalez-Barahona, Characterizing outdateness with technical lag:
an exploratory study, International Conference on Software Engineering
Workshops (2020). doi:10.1145/3387940.3392202.

[47] J. Stringer, A. Tahir, K. Blincoe, J. Dietrich, Technical lag of dependencies
in major package managers, in: Asia-Pacific Software Engineering Con-
ference (APSEC), 2020, pp. 228–237. doi:10.1109/APSEC51365.2020.
00031.

[48] R. Gonzaga, Why you should pin your github actions by commit-hash,
https://blog.rafaelgss.dev/why-you-should-pin-actions-by-
commit-hash (June 2023).

[49] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian, The promises and perils of mining GitHub, in: International
Conference on Mining Software Repositories (MSR), ACM, 2014, pp. 92–
101. doi:10.1145/2597073.2597074.

[50] O. Dabic, E. Aghajani, G. Bavota, Sampling projects in GitHub for MSR
studies, in: International Conference on Mining Software Repositories
(MSR), IEEE, 2021, pp. 560–564.

[51] J. Lobacevski, Keeping your github actions and workflows secure. part 3:
How to trust your building blocks, https://securitylab.github.com/
research/github-actions-building-blocks/ (August 5 2021).

[52] T. Katz, Stealing arbitrary GitHub Actions secrets, https://blog.
teddykatz.com/2021/03/17/github-actions-write-access.html
(March 17 2021).

[53] O. Gil, Bypassing required reviews using github actions, https:
//medium.com/cider-sec/bypassing-required-reviews-using-
github-actions-6e1b29135cc7 (October 12 2021).

[54] P. Elliott, Compromise by git tags, https://www.scalefactory.com/
blog/2021/02/18/compromise-by-git-tags/ (Feburary 18 2021).

[55] R. Bos, Github actions has security issues, XPRT Magazine 13 (2022)
37–39.
URL https://xpirit.com/wp-content/uploads/2022/10/Xpirit_
XPRT_magazine_13_final.pdf

[56] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer, 2012.

43

https://doi.org/10.1145/3387940.3392202
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://blog.rafaelgss.dev/why-you-should-pin-actions-by-commit-hash
https://blog.rafaelgss.dev/why-you-should-pin-actions-by-commit-hash
https://doi.org/10.1145/2597073.2597074
https://securitylab.github.com/research/github-actions-building-blocks/
https://securitylab.github.com/research/github-actions-building-blocks/
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
https://medium.com/cider-sec/bypassing-required-reviews-using-github-actions-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-using-github-actions-6e1b29135cc7
https://medium.com/cider-sec/bypassing-required-reviews-using-github-actions-6e1b29135cc7
https://www.scalefactory.com/blog/2021/02/18/compromise-by-git-tags/
https://www.scalefactory.com/blog/2021/02/18/compromise-by-git-tags/
https://xpirit.com/wp-content/uploads/2022/10/Xpirit_XPRT_magazine_13_final.pdf
https://xpirit.com/wp-content/uploads/2022/10/Xpirit_XPRT_magazine_13_final.pdf
https://xpirit.com/wp-content/uploads/2022/10/Xpirit_XPRT_magazine_13_final.pdf

	Introduction
	Related work
	On Continuous Integration, Deployment and Delivery
	On GitHub Actions
	On outdatedness of reusable software components
	On technical lag

	Methodology
	About GitHub workflows and reusable Actions
	Data extraction

	Research goal G1
	Research goal G2
	Discussion
	The GitHub Actions software ecosystem
	Semantic Versioning practices
	Security impact of outdated Actions
	Beyond the GitHub Actions ecosystem

	Threats to validity
	Conclusion

