
The Journal of Systems and Software 165 (2020) 110573 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

GAP: Forecasting commit activity in git projects 

Alexandre Decan 

a , ∗, Eleni Constantinou 

a , b , Tom Mens a , Henrique Rocha 

c 

a Software Engineering Lab, University of Mons Avenue Maistriau 15, B-70 0 0 Mons, Belgium 

b Software Engineering and Technology group, Eindhoven University of Technology Groene Loper 5, AE 5612, Eindhoven, the Netherlands 
c Lab On Reengineering (LORE - Ansymo), University of Antwerp Middelheimlaan 1, Antwerpen B-2020, Belgium 

a r t i c l e i n f o 

Article history: 

Received 12 November 2019 

Revised 22 February 2020 

Accepted 9 March 2020 

Available online 10 March 2020 

Keywords: 

Git 

Commit activity 

Developer abandonment 

Distributed software development 

Prediction model 

a b s t r a c t 

Abandonment of active developers poses a significant risk for many open source software projects. This 

risk can be reduced by forecasting the future activity of contributors involved in such projects. Focusing 

on the commit activity of individuals involved in git repositories, this paper proposes a practicable prob- 

abilistic forecasting model based on the statistical technique of survival analysis. The model is empirically 

validated on a wide variety of projects accounting for 7528 git repositories and 5947 active contributors. 

We found that a model based on the last 20 observed days of commit activity per contributor provides 

the best concordance. We also found that the predictions provided by the model are generally close to 

actual observations, with slight underestimations for low probability predictions and slight overestima- 

tions for higher probability predictions. This model is implemented as part of an open source tool, called 

GAP , that predicts future commit activity. 

© 2020 Elsevier Inc. All rights reserved. 
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. Introduction 

Software development is inherently a social activity, especially

n open source software (OSS) development, as OSS projects are

eveloped and maintained by communities of interacting con-

ributors ( Crowston and Howison, 2005 ). The evolution of OSS

rojects depends on the presence of volunteers or paid contribu-

ors, i.e.,company employees supporting the project, that will take

n the maintenance effort ( Riehle et al., 2014 ). However, company

upport in OSS is rather scarce ( Dias et al., 2018 ), requiring the

elp of volunteers to maintain OSS projects. The risk of contrib-

tors becoming inactive can be detrimental for the project as

ess than 50% of such abandoned projects find new contributors

o take on their maintenance ( Avelino et al., 2019 ). It is there-

ore important to retain existing contributors to minimize such

isks, as well as to prevent the knowledge loss that occurs when

mportant contributors abandon the projects they are involved

n ( Rigby et al., 2016 ). 

The topic of contributor retention has been extensively studied

y the research community. Most studies performed an a posteriori

nalysis and investigated the effects of contributor abandonment

n the project sustainability over time, revealing that contributor
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etention is one of the many factors that plays a role in a project’s

ustainability over time ( Gamalielsson and Lundell, 2014; Stein-

acher et al., 2016; Constantinou and Mens, 2017a; Fronchetti

t al., 2019; Miller et al., 2019 ). However, OSS contributors and

ommunity managers can benefit from an a priori approach that

ill identify contributors at risk of abandoning the project early.

uch an approach would consist of monitoring the activity of con-

ributors to detect probable future abandonments, and to mitigate

he associated risks as early as possible, e.g.,by engaging with the

ontributor, or by identifying other qualified contributors to take

ver the work. 

Existing project monitoring solutions provide useful infor-

ation about a project’s contributor community, e.g., Bitergia’s

nalytics service 1 analyses project community activity, perfor-

ance, diversity, size and demography. Although these analytics

re highly relevant to get insight in the past and current project

ctivity, they cannot be utilized to assess the risk of losing existing

ontributors in the near future. Currently, there is no methodology

n the literature to predict when the next contributor activity will

ake place, neither automated tool support to perform such an

nalysis. This paper fills that gap by providing a method to fore-

ast the future development (commit) activity of OSS contributors
1 bitergia.com/bitergia-analytics/ . 
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on git repositories. By doing so, our work enables community

managers to properly assess abandonment risks and tackle such

issues before they become detrimental to the project continuation.

We propose a simple probabilistic forecasting model that relies

on the previous and recent contributions of individual contributors

to estimate the elapsed amount of time until their next contribu-

tion. We validate the forecasting model on a wide range of diverse

projects. To this end, we use a large collection of git repositories

involving 5947 distinct software developers contributing to 7528

software repositories, covering a wide range of projects in terms

of longevity (short/long-lived), technical size (number of commits)

and community size (small/large groups of contributors). The

model is operationalised through the Git Activity Predictor ( GAP ),

an open source tool that supports different output formats and

visualisations of the predictions. 

The remainder of this paper is structured as follows.

Section 2 presents the related work. Section 3 introduces the prob-

abilistic activity forecasting model. Section 4 validates the model

through an empirical case study on Cargo . Section 5 presents

the GAP tool implementing this model. Section 6 discusses the

benefits that GAP can bring to OSS project communities, possible

limitations of the underlying model, and presents potential direc-

tions of future work. Section 7 discusses the threats to validity.

Finally, Section 8 concludes. 

2. Related work 

The evolution of OSS projects depends on the presence of vol-

unteers or paid contributors, i.e.,company employees supporting

the project, that will take on the maintenance effort ( Riehle et al.,

2014 ). Voluntary work is an important asset playing a big role

in OSS project long term survival and continuity. It is essential

both to attract newcomers and retain developers to maintain a

critical mass of core developers in a project ( Qureshi and Fang,

2011 ). Coelho and Valente reported that 41% of failed open source

projects cited a reason related to a lack of time or interest of the

developer team ( Coelho and Valente, 2017 ). 

Many studies have focused on developer attraction and reten-

tion. Steinmacher et al. conducted a literature review identifying

barriers encountered by newcomers to OSS projects and pro-

posed a classification of these barriers based on socio-technical

attributes, e.g.,technical knowledge, experience, and social in-

teractions ( Steinmacher et al., 2015 ). In a follow-up work, they

presented FLOSScoach , a dedicated portal created to support

newcomers to OSS projects ( Steinmacher et al., 2016 ). Fronchetti

et al. found through a study of 450 OSS projects that the most

influencing factors to attract contributors are the number of stars,

the time to merge pull requests, and the number of programming

languages used ( Fronchetti et al., 2019 ). 

Lin et al. analysed the evolution of industrial OSS projects

to identify how the duration and type of contributions affect

developer turnover ( Lin et al., 2017 ). They found that developers

that remain active for longer periods of time mainly focus on

contributing to the source code and on modifying existing files

instead of creating new ones. Iaffaldano et al. conducted inter-

views and analysed the reasons for contributors taking temporary

breaks ( Iaffaldano et al., 2019 ). Their analysis suggests that longer

temporary breaks can lead a contributor to a permanent abandon-

ment state. Constantinou and Mens investigated socio-technical

factors in relation to developer retention in the RubyGems and

npm ecosystems ( Constantinou and Mens, 2017a ). They found that

both social and technical activities influence developer abandon-

ment, and that socially active developers are less likely to abandon.

Developer retention has been shown to influence project

sustainability. The tight relationship between an author and its

contributed source code makes software development susceptible
o knowledge loss when authors leave the project and abandon

heir code ( Rigby et al., 2016 ). Gamalielsson and Lundell showed

hat the long-term involvement of developers is favourable for

 project’s sustainability ( Gamalielsson and Lundell, 2014 ). Con-

tantinou and Mens studied the Ruby ecosystem on GitHub and

ound a high impact of contributor abandonment on the sustain-

bility of Ruby projects ( Constantinou and Mens, 2017b ). Avelino

t al. studied the abandonment of open source projects by their

ore developers and the motivation and difficulties faced by new

ore developers taking over these projects ( Avelino et al., 2019 ).

hey report that only 41% of the studied projects recovered after

ll their core developers abandoned them. Miller et al. looked at

he reasons why established open source contributors disengage.

hey suggest that data-driven systems could be developed to help

dentify groups at risk ( Miller et al., 2019 ). 

These studies reveal the need for project community mon-

toring tools to predict which individuals are more likely to

bandon soon, and to mitigate such risks early. Our work aims

o address this need, by proposing an activity prediction model

hat can be used as a basis to assess the likelihood of contributor

bandonment. 

Although there are studies on the analysis of developer con-

ributions in open-source projects, these studies focus mainly on

easuring or characterising developer contributions, rather than

n when these contributions will occur. For example, Amor et al.

roposed to characterize the complete development activity by

ombining data and metrics from different data sources (ver-

ioning system, mailing list, issue tracker, etc.) to measure the

otal effort invested in a project ( Amor et al., 2006 ). This idea

as further extended by Gousios et al. who proposed a model

elivering accurate developer contribution measurements based

n a combination of traditional contribution metrics and data

ined from software repositories ( Gousios et al., 2008 ). Mockus

t al. studied how much effort remains to be spent on a specific

oftware project and how that effort will be distributed over time.

hey proposed a model to predict software project effort, schedule

nd defects so as to plan resource allocation ( Mockus et al., 2003 ).

eicheng et al. observed that developers often do not commit

or a long time. They explored developer commit habits and their

elationship with file version evolution on eight GitHub projects

sing four metrics ( Weicheng et al., 2013 ), including the time

nterval between two commits. They showed that the average

ime between commits ranges from 2 to 5 days, depending on the

umber of changed files. They concluded that knowing the habits

f developers is helpful to make a better work plan. 

Our work is inspired by the above studies, but focuses on fore-

asting the future activity of developers in terms of commit ac-

ivity. The model we propose is based on the technique of sur-

ival analysis ( Aalen et al., 2008 ). This technique analyses “time

o event” data with the aim to estimate the survival rate of a given

opulation. It has been used in other empirical software engineer-

ng studies, e.g.,to estimate the survival of open source projects

ver time ( Samoladas et al., 2010 ), to analyse the use and removal

f functions in PHP code ( Kyriakakis and Chatzigeorgiou, 2014 ),

o analyse the survival of database access libraries in Java

ode ( Decan et al., 2017 ), to compare the release cycle of reusable

omponents in software ecosystems ( Decan et al., 2019 ), to analyse

etention of developers in software ecosystems ( Constantinou and

ens, 2017a; Lin et al., 2017 ), or to understand how contributors

oin the core team of a FLOSS project ( Bird et al., 2007 ). 

. Probabilistic activity forecasting model 

The goal of this paper is to provide a practicable forecasting

odel that estimates the elapsed amount of time until the next

ontribution of a git author. Such a model relies on recent in-
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Fig. 1. Survival probability for event “the contributor commits to the git repository”

of project serde-rs/serde on GitHub , computed at four different time points. 
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2 The motivation of the choice of n = 20 will be discussed in detail in Section 4.2 . 
ormation about previous commits of individual contributors to

stimate the expected amount of time until their next activity

ill take place. In Section 3.1 we evaluate the statistical mod-

lling technique that we deem most appropriate for this purpose.

ection 3.2 provides more details on the selected technique. 

.1. Selected technique 

We propose a model based on the technique of survival anal-

sis, also known as event history analysis ( Aalen et al., 2008 ).

his technique analyses “time to event” data with the aim to

stimate the survival rate of a given population, i.e.,the expected

ime duration until a specific “event of interest” happens. Survival

nalysis models take into account the fact that some observed

ubjects may be “censored” when the event of interest was not 

yet) observed for them. Survival analysis is a natural choice when

t comes to predict the likelihood of an event such as death of

n biological organism, failure of mechanical component, or the

ccurrence of a commit activity in a project. 

While other techniques could have been considered to predict

uture activity of git contributors, they were excluded for practical

easons. Auto-Regressive Integrated Moving Average (ARIMA) is a

ell-known statistical technique for predicting future points in a

ime series ( Shumway and Stoffer, 2011 ), but it requires the time

eries to be stationary. In our data, we found that the number

f nonseasonal differences (i.e.,the degree of differencing) needed

or stationarity varies in time and depends on the considered

ontributor and project. As such, ARIMA cannot be applied to

roject contributors without prior individual validation. Doing so

ould require a lot more historical data that is not necessarily

vailable for smaller projects or for less active contributors. 

More advanced models, such as semi-parametric proportional

azards models or fully parametric accelerated failure time models,

ave the advantage that they can take into account the effect of

ovariates on events ( Collett, 2003 ). Such models often lead to

ore accurate predictions, but come at the extra cost of more

emanding assumptions: they require that all individuals have the

ame hazard function, up to a scaling factor. Moreover, these mod-

ls need to be trained with appropriate covariates. Identifying such

ovariates is not an easy task and collecting the data for them is

hallenging in practice, even for simple covariates (e.g.,activity of

he contributor in other projects, other kinds of activities carried

ut by the contributor, etc.). While these data can be collected

nce to feed and train the model, it is still required to collect

ew data each time the model is used for predictions on a new

ontributor, a new project or a new date. This makes such models

ifficult to use in practice. In comparison, a survival analysis model

nly requires to collect, for each individual, a limited number of

revious contributions within the same project. 

.2. Survival analysis model 

The prediction model we propose relies on the Kaplan-Meier

stimator ( Kaplan and Meier, 1958 ), a common non-parametric

tatistic to estimate survival functions. A survival function de-

nes the probability of surviving past time t or, equivalently, the

robability that the event has not occurred yet at time t . 

In our case, it provides probabilities for individual git con-

ributors to remain active in function of the time elapsed since

heir previous recorded day of activity. We decided to focus on

aily commit activity for pragmatic reasons: it is unlikely that a

roject community manager would need to predict the activity

f a contributor up to the nearest second or even hour. While an

ven coarser granularity of time (e.g.,weeks instead of days) might

ead to more accurate models, it would be too coarse to provide

seful insights. 
Concretely, given an individual contributor and a project, for

ach day when a git activity is recorded, we compute the duration

ntil the next day of commit activity of this contributor. The last

 computed durations are then fed to the model and used to

stimate the survival rate of the considered event. 

As an example, Fig. 1 shows Kaplan-Meier survival functions

t four different time points in 2018 and in 2019, obtained by

xtracting and analysing the commit activity of an anonymized

ontributor of project serde-rs/serde on GitHub . For each con-

idered time point, the model is built based on the last n = 20

ime deltas (the elapsed time between the previous commit day

nd the next one) for the commit activity of the contributor. 2 

The figure shows the survival probability for the event “the

ontributor commits to the git repository” as a function of the

ime elapsed since the previous day of activity of this contributor.

ach coloured curve shows the probability (on the y-axis) that

he next commit will not take place in a specific number of days

value on x-axis). Based on this probability, the complement prob-

bility that a commit will take place in a specific number of days

an be easily computed. For example, consider the orange curve

orresponding to October 1st 2018. There is a 45% probability

 = 1 . 0 − 0 . 55 ) that the next commit will take place within 2 days,

s illustrated by the dashed grey lines in Fig. 1 . 

To have a first indication of the expected accuracy of the

roposed forecasting model, we applied it on all days of activity

f an anonymized git contributor on project serde-rs/serde on

itHub . Concretely, for each date of recorded activity, a prediction

odel was built based on the last n = 20 time deltas. These

odels were used to predict the duration until next contribution

ith probabilities 0.5, 0.6, 0.7, 0.8 and 0.9. The predicted durations

re compared with the actual duration between the currently

onsidered day and the day of the next recorded activity. 

Fig. 2 shows the actual days of commit activity of the contrib-

tor, and the predicted probabilities as areas with different shades

f blue. Dots • correspond to correctly predicted days of activity

they belong to a blue shared area), while crosses × correspond

o those days of activity for which the model failed to correctly

redict the time until the next commit. The figure provides initial

nsight (for a single contributor on a single project only) in the

ccuracy of the model, in that there are considerably more correct

redictions than there are incorrect ones. 

. Validation of the probabilistic model 

This section carries out a full-fledged empirical study to eval-

ate the accuracy of the model on a large and varied dataset

ontaining thousands of projects and contributors. A replica-

ion package of the model and its evaluation is provided at

oi.org/10.5281/zenodo.36 6 6048 . 

https://doi.org/10.5281/zenodo.3666048
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Fig. 2. Rolling application of the probabilistic model for an anonymized contributor on git project serde-rs/serde on GitHub . Dots • correspond to correctly predicted days 

of activity while crosses × correspond to incorrectly predicted days of activity. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 3. Distributions of several characteristics for the considered projects and contributors. 
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4.1. Selected dataset 

To validate the probabilistic forecasting model, we need a large

dataset containing thousands of git repositories involving thou-

sands of contributors. The dataset should include a wide range

of software projects serving different purposes, and exhibiting a

wide variation in terms of longevity and size. The dataset should

exclude git repositories that have been created merely for exper-

imental or personal reasons, or that only show sporadic traces of

commit activity ( Kalliamvakou et al., 2014 ). 

Registries of reusable software packages (e.g., npm for

JavaScript , Cargo for Rust , Maven for Java , or PyPI for

Python ) are good candidates to find such large datasets, as they

typically host thousands of language-specific software packages at

different levels of maturity and popularity and serving different

purposes. However, not all packages belonging to such registries

necessarily have an associated git repository. 

To choose an appropriate dataset, we considered all 36 package

registries available in the libraries.io 1.2.0 dataset of package

managers ( Nesbitt and Nickolls, 2018 ). We retained the Cargo

package registry as an adequate case study since it includes over

ten thousand distinct packages covering 47 different application

domains 3 , and a very high proportion of these packages (84.5%)

have an associated git repository. For comparison, only 68.4% of all

npm packages report an associated git repository, and even less

for PyPI (61.0%) and Maven (47.5%). 

Over 98% of all git repositories associated to Cargo projects

were hosted on GitHub . We cloned and locally analysed all those

GitHub repositories that were available at the time of our analysis.

This corresponded to 75.2% of the initial dataset, accounting for

9208 projects. For each project, the commits of all branches were

extracted. Commits found in multiple branches (i.e.,commits that

were merged in other branches) were deduplicated and considered

only once. This left us with over 1.2M commits. 

To safeguard the validity of our results, we addressed the

issue of multiple identities for distinct contributors within and

across all git repositories. Following the approach of Avelino et al.

( Avelino et al., 2019 ), the GitHub usernames were retrieved using

the GitHub API and mapped to contributors’ name and email
3 https://crates.io/categories . 

F

t

airs. An alternative way to resolve multiple identities would

ave been to resort to an identity merging algorithm ( Robles and

onzález-Barahona, 2005; Bird et al., 2006; Goeminne and Mens,

013; Kouters et al., 2012 ). However, such algorithms require

anual inspection and validation of the results, resulting in a very

abour-intensive and error-prone process. 

We also removed 6975 contributor/project pairs with a single

ay of activity as it is obviously not possible to make predictions

ased on a single day of activity. 

Our final dataset includes 7528 projects, 5947 developers,

nd accounts for 374,622 distinct days of commit activity when

onsidering all 17,340 contributor/project pairs. Fig. 3 shows the

istributions of several characteristics of the considered projects

nd contributors by means of boxen plots ( Hofmann et al., 2011 ).

e observe that the dataset covers a wide range of projects and

ontributors with a diversity in terms of longevity, technical size

number of commits), social size (number of contributors per

roject and number of projects per contributor) and popularity

number of stars and forks). 

It is important to note that not all contributor/project pairs

an be used to train the forecasting model. For a given n , the

odel requires at least n durations (corresponding to at least

 + 1 days of git commit activity) to be trained, and an extra one

or its validation. Some contributor/project pairs will not have a

ommit-day history length of at least n + 2 samples and therefore

ave to be excluded for validating the model. 

Fig. 4 shows the number of contributor/project pairs (left

-axis) and the number of samples in the dataset (right y-axis)

ith respect to the value of n . We observe a rapid decrease in the
ig. 4. Number of contributor/project pairs (left y-axis) and number of samples in 

he dataset (right y-axis) in function of n . 

https://crates.io/categories
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Fig. 6. Deviation from perfect concordance w.r.t. the number of past observations 

used to train the model. 
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umber of pairs for low values of n , a consequence of the pres-

nce of many short-lived contributions. For instance, going from

 = 1 to n = 2 results in 3231 fewer pairs ( −18 . 6% ) accounting

or 17K samples ( −4 . 9% ). However, the set of samples on which

he model is evaluated remains large even for higher values of n .

or instance, the dataset still contains 214,993 samples for n = 20 ,

41,679 samples for n = 50 , and 88,644 samples for n = 100 . 

.2. Evaluation of the probabilistic model 

Using the selected dataset, for each recorded day of activity of

ach contributor in each project, n = 20 durations corresponding to

he time intervals between the 21 previously recorded days of ac-

ivity were fed individually into the model, resulting in one model

er day of activity, per contributor and per project. Next, the values

redicted by the model were compared with the actual duration

etween the considered day of activity and the next one, following

 rolling-origin/walk-forward validation method ( Stein, 2007 ). 

Because of the probabilistic nature of the activity pre-

iction model, it cannot be evaluated in a straightforward

ay ( Wilks, 2011 ). This is because the model does not return a

rediction in the form of “Alice will contribute again in 5 days”.

nstead, it provides a probability distribution for the next contri-

ution of Alice, e.g.,there is a 70% chance that Alice will contribute

n the next 10 days and a 90% chance that she will contribute in

he next 20 days. Therefore, we first check whether the returned

robability distributions correspond to the distribution of actual

bservations. In other words, we verify if the values predicted

ith a probability p actually correspond to 100 ∗p percent of the

ctual observations. 

To this end, our model is evaluated using a reliability

lot ( Wilks, 2011 ), shown in Fig. 5 . It is a variant of a Q - Q

quantile-quantile) plot showing for each probability the propor-

ion of predictions that are actually observed (i.e.,that are less than

r equal to the prediction). A point ( p, y ) in the figure indicates

hat 100 ∗y percent of the values predicted for probability p are

orrect upper bounds when they are compared with the actual

bservations. A perfectly concordant model is obtained when

 = p, i.e.,when 100 ∗p percent of the observations are less than or

qual to the predicted values associated with probability p . As can

e observed in Fig. 5 , high probability values have a very small

istance between the blue line and the ideal situation represented

y the red dotted line. This means that the higher the probability

s, the better the concordance of the model. 

High probability forecasts ( p ≥ 0.8) are very slightly under-

onfident (they are predicted less often than they are observed),

nd low probability forecasts (especially below 0.5) are strongly

verconfident (they are predicted far more often than they are ac-

ually observed). The observed overconfidence for low probability

redictions can be explained by the low dispersion of values that

re predicted with lower probabilities p : from 94.2% (for p = . 1 ) to
ig. 5. Reliability plot relating the estimated probability distribution to the distri- 

ution of actual observations. 

F

b

6.9% (for p = . 5 ) of the predictions are of 0 days, a duration that

as actually observed in around 43.4% of the cases considered.

his is a consequence of many contributors having many periods

f time with a (mostly) daily activity, and explains why at least

4.1% of the predictions are actually observed even when the

robability is low ( p = . 1 ). 

While the evaluation results presented above rely on a model

ased on the last n = 20 past observed durations, we experimen-

ally evaluated the model on a range of increasing values for n ,

espectively 10, 20, 30, 50, 75 and 100. Larger values of n imply

hat we require and consider a longer commit history, incidentally

xcluding spontaneous contributors with short-lived contributions. 

maller values of n indicate that we only rely on the most recent

ays of activity to forecast when future contributions will take

lace. Fig. 6 shows the deviation of the model with respect to

he perfect concordance for different values of n . Smaller devi-

tion indicates a closer match to the perfect concordance and

onsequently a better model. We computed the sum of squared

eviations from perfect concordance for each considered value of

 to compare the resulting models. We found that considering the

ast 20 observed durations produces the lowest score (0.24) com-

ared to the other values that have a score comprised between

.25 ( +4% , for n = 30 ) and 0.34 ( +41% , for n = 100 ). 

.3. Accuracy of the forecasting model 

The accuracy of the forecasting model is evaluated by analysing

he error between the predicted and actual (observed) date of

he next commit. Since such errors can be either overestimations

r underestimations, we computed the number of observations

or which the predicted value is above (overestimation), below

underestimation), or equal to the observed value. Fig. 7 shows

he proportion of overestimations, underestimations and correct

stimations for probabilities ranging from 0.1 to 0.9. 

We observe that predictions made with lower probabilities

re mostly underestimations while predictions made with higher

robabilities are mostly overestimations. This should not come as

 surprise since the estimations provided by the prediction model
ig. 7. Proportion of overestimations, underestimations and exact estimations made 

y the forecasting model, for probability values ranging from 0.1 to 0.9. 
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Fig. 8. Distribution of the differences between predicted and observed durations of 

inactivity. 
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b  
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p  
increase with the probabilities. On average, the model predicts

lower values for lower probabilities, and higher values for higher

probabilities. 

Fig. 8 presents the distributions of the differences between

predicted and observed durations of inactivity for probabilities

ranging from 0.1 to 0.9. Values closer to zero correspond to more

accurate predictions. The dashed gray line corresponds to a “per-

fect” match between the predicted and observed time until the

next commit. Values above the dashed line indicate overestima-

tions, while values below indicate underestimations of the time

until the next commit. 

We observe that most differences are quite close to 0. For

probabilities p < . 5 , half of the differences between the estimated

value and the observed value are comprised between 0 (25 th 

percentile) and -5 days (75 th percentile). For probabilities p > . 5 ,

positive differences gradually replace negative differences as the

probability increases, confirming what was observed for Fig. 7 . For

instance, for p = . 8 half of the differences range between 0 and 7

days with an average of 1.4 days, close to the median value. For

p = . 9 , the distribution of the positive differences is much more

skewed, with a median value of 6 days, an average of 12.9 days

and a 75 th percentile of 18 days. 

5. The GAP tool 

Based on the probabilistic forecasting model of Section 3 , the

Git Activity Predictor ( GAP ) was implemented in Python 3.5+. It is

packaged and installable through pip , the official package manager

for Python. 4 . GAP makes it possible to forecast developer activity

in the form of git commits. Version 0.11.0 of GAP was used for

this paper. 

The tool has also been integrated by the Bitergia company 5 

in their software development analytics and project monitoring

dashboard GrimoireLab . This will facilitate its accessibility and

take up by open source project communities. 

Fig. 9 presents the general architecture and process followed by

GAP . Given a list of git repositories and an optional identity map-

ping file, GAP analyses the repositories to generate per contributor

probabilistic forecasting models for the next commit activity of

the contributor at a specific point in time. The forecasts can be

reported in four different formats: (i) simple text, (ii) comma-

separated values (csv), (iii) JSON, and (iv) bar activity charts. 

GAP comes with a command-line interface, summarised in

Fig. 10 . In its simplest form, it only requires a path to the git

repository of the software project that needs to be analysed. One

or more such repositories can be provided as input, depending on

the scope of the analysis. For example, a company may desire to

analyse the commit activity of all its paid contributors in the open

source projects the company is involved in; package maintainers
4 pip install git+ https://github.com/alexandredecan/gap . 
5 https://bitergia.com . 

t  

g  

r  

b  
ay desire to analyse the global activity of all the packages they

re maintaining; a package developer may wish to analyse the

ctivity in a project and all its dependents; and so on. By default,

AP analyses all branches of each repository but the list of

ranches to analyse can be specified. 

A file mapping multiple authors into specific identities can

e provided to group contributors into teams, to merge multiple

dentities of the same contributor into one, to anonymise author

dentities, or to exclude specific authors from the analysis. Param-

ters can be provided to set the date of the analysis (current day

y default), the number of observations used by the model (20 by

efault), the list of probability values (0.5, 0.6, 0.7, 0.8 and 0.9 by

efault), and the minimal recency of the last activity (30 days by

efault). Predictions can be expressed either as dates or as relative

ime differences (by default). 

GAP analyzes the commit history per contributor and predicts

he future activity according to the forecasting model of Section 3 ,

roducing activity forecasts for each contributor. Fig. 11 shows

he output of GAP for a randomly chosen Rust project on git,

nalysed on 2019-05-16. The authors listed in the output are auto-

enerated names that we have provided to the identity mapping

le anon.csv to guarantee author anonymity. 

The output shows, for each recently active contributor (first

olumn), the time difference in days since the last recorded

ommit activity (second column), and the expected number of

ays until the next predicted day of activity according to a cer-

ain probability threshold ranging between 0.5 and 0.9 (last five

olumns). Predicted values greater than zero indicate that the next

ay of activity is expected in the future, while negative values

ndicate that the predicted day of activity should have taken place

efore the specified day of analysis. 

The output of GAP can also be used as a basis for a project-

evel dashboard that visualises the project’s past and estimated

uture commit activities, as in the example provided in Fig. 12 ,

enerated by GAP by appending --plot to the command-line

rgument. In Fig. 12 , the orange squares represent the dates of

ecorded commit activity of each contributor. The blue rectangles

ndicate the predicted duration until the next activity for different

robabilities. For instance, the figure shows that M. Fry (the third

ontributor in Fig. 12 ) has been inactive for 8 days (counting

ackwards from the date of the analysis) but there is a 70%

robability that this contributor will contribute within the day,

nd 80% within the next 8 days. On the other hand, the inactivity

f J. Lopez (the second contributor in Fig. 12 ) already exceeds

he duration predicted with a probability of 90%, indicating an

nexpected irregularity in the activity frequency. 

The line with “bots (grouped)” in the figure shows the activity

f bots . Two bots were manually identified in the dataset for this

articular project repository and we used the identity mapping

le to merge them into a single identity. As expected, bots reveal

 much more frequent activity pattern. With few exceptions, they

ommit on a daily basis. Hence, there is 80% probability that either

ot will commit again the next day. 

. Discussion and future work 

Keeping track of contributors’ activity or lack of activity can

e very important for the project’s sustainability ( Gamalielsson

nd Lundell, 2014; Constantinou and Mens, 2017a ). Longer pe-

iods of inactivity of a contributor may lead to a permanent

isengagement and can have a negative effect on a project. For

rojects involving a large number of contributors, it is not feasible

o contact them directly and ask when their next activity is

oing to take place. Since each contributor has different activity

hythms, it is difficult to assess manually when someone is falling

ehind their regular schedule. Consequently, a forecasting model

https://github.com/alexandredecan/gap
https://bitergia.com
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Fig. 9. Presentation of the tool architecture. 

Fig. 10. List of GAP command-line arguments. 

Fig. 11. Example of running GAP on a Rust project’s git repository. (Author names 

are anonymised and replaced by autogenerated ones.) Reported values represent the 

predicted number of days until the next commit activity will take place. Negative 

values indicate that no activity has been recorded within the predicted time inter- 

val. For example, J. Lopez was predicted with 80% probability to have committed 

6 days before 2019-05-16. 

Fig. 12. Proposed activity forecasting visualisation for a selected git project. GAP 

was applied on 2019-05-16 for this example. (Autogenerated names are used for 

the project contributors.). 
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eeds to take into account different activity behaviours for each

erson ( Iaffaldano et al., 2019 ). The value of GAP relies on such

ccasions. GAP identifies the likelihood of a new contribution

ased on the past activity profile of each individual contributor.

herefore, the forecasts produced by GAP are specific to each

ndividual. The tool can therefore be used to verify which contrib-

tors are close to becoming inactive and plan accordingly, possibly

itigating abandonment issues. 

As discussed in Section 4.3 , estimations provided by GAP are

n general close to the observed durations. Forecasts with a higher

robability are mostly overestimations, i.e.,the predicted time for

he next activity is usually higher than the actual time a contrib-

tor usually takes. For lower probabilities, most of the observed

ifferences between predictions and actual observations are slight

nderestimations. When we consider the scenario of identifying

eople getting close to becoming inactive, overestimation or un-

erestimation is not a real issue. Indeed, since underestimations

ostly occur for lower probabilities, they mainly affect short-term

redictions (e.g.,predicting two days of inactivity instead of three).

verestimations are a priori of no consequence since the activity

ill be observed before the predicted date. 

Project managers can decide on the most adequate aban-

onment risk policy for dealing with inactive contributors. For

nstance, some managers might prefer overestimating in order

o have some leeway before contacting (and possibly bothering)

n inactive contributor. Others might prefer to underestimate the

redictions to mitigate the loss of certain contributors as early

s possible. Either way, GAP can be configured to give a better

stimation based on each project manager’s specific policy. 

Although a project manager could use the forecasting model on

it commit activity for the aforementioned reasons, git commits

onstitute only a subset of all activity that could be made by

roject contributors. The forecasting model can be adapted to

ake into account activities at another level of granularity (e.g.,pull

equests instead of commits), other technical activities (e.g.,code

eviews, issue triaging), or even social activities (e.g.,end-user sup-

ort, discussions on mailing list). The model can be easily adapted

o consider individually each of these types of activities. However,

t would fail to deal with multiple simultaneous activities. The rea-

on is that the used statistical Kaplan-Meier estimator is not able

o handle competing events and competing risks: “this method can

andle only one single event at a time: all other events are treated

s censored observations and the complement of the Kaplan-Meier

stimate (1-KM) is interpreted as the probability of the event of

nterest in a hypothetical world in which the competing event does

ot exist ” ( Noordzij et al., 2013 ). Consequently, a promising future

ork is to explore different techniques (such as the Cumulative

ncidence Function ( Austin et al., 2016 )) that are able to deal

ith competing events and, by extension, deal with simultaneous

ctivities of different types. 
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Not only can the model be used for real time monitoring

of a project or an ecosystem community, but it could also lead

to interesting insights in the context of an a posteriori analysis.

Indeed, even if the proposed model is a predictive model, the

underlying statistical technique of survival analysis is essentially

descriptive. The study of the evolution of the survival function of

contributors through time constitutes an interesting research track,

which can be useful to understand the evolution of contributors’

behaviour (e.g.,contribution phases or cycles), or the evolution of

contribution profiles (e.g.,an occasional contributor becoming reg-

ular, or vice-versa). At ecosystem scale, such a study could provide

useful insights, e.g.,on inter-project migrations or abandonment,

as “a dead or dying project can also be indicated [... ] through lost

energy from formerly involved contributors, who may have moved on

to other projects that better capture their interest ”. 6 

This paper mainly focused on “when” the next commit activity

will take place, and not on the reasons for such an activity. While

from a practical point of view, more advanced models based on

Accelerated Failure Time and Proportion Hazard Models have been

discarded for practical reasons (because of the amount of data

needed to train and use them), such models may be particularly

interesting in the context of an a posteriori analysis. Since they

can take into account the effect of covariates on the probability

of occurrence of an event, they could lead to interesting insights

to identify and understand the factors that could influence the

commit activity of contributors. 

7. Threats to validity 

Following the structure recommended by

Wohlin et al. (20 0 0) we discuss the threats that might affect the

validity of our findings, and how we have tried to mitigate them. 

Construct validity concerns the relation between the theory

behind the experiment and the observed findings. In our work,

the main sources of such threats are related to distorted git com-

mit histories due to the presence of micro-commits and commit

squashing ( Kalliamvakou et al., 2014 ). 

The practice of micro-commits tends to result in sequences

of many small commits that should be considered together as

single atomic changes. Micro-commits can lead to overestimating

the activity and productivity of a contributor. Since micro-commit

sequences tend to take place in short time spans (e.g., the commits

are spread over not more than a couple of hours), our findings

should not be affected by their presence, as our model relies on

the duration between days of commit activity. As such, even a

huge number of commits contributed during the same day will

still be counted as a single event (one day of commit activity by

the contributor). 

The practice of commit squashing corresponds to the a poste-

riori grouping of several commits. Depending on a project’s policy,

such commit squashes are mainly observed in pull requests.

The rationale is to deliberately group all commits related to a

contribution into a single commit in order to ease the reading

of the project’s git history. Commit squashing inevitably leads

to an underestimation of the actual contributions, as it implies

the removal of potentially many commits. Unfortunately, there is

no reliable technique to identify and/or split these commits to

retrieve the original ones. However, it should have little influence

on the accuracy of the predictions made by our model as long as

squashing is consistently performed on the git history of a given

contributor within a given project. 

Another threat to construct validity stems from the presence

of contributors with multiple identities (different git “author” field
6 github.com/todogroup/todogroup.github.io/blob/master/content/en/guides/ 

shutting-down.md . 

c  

t  

t  
alues), since the commit activity of a given individual could be

pread over these different identities. To mitigate this threat, we

ollowed an approach similar to Avelino et al. (2019) by merging

he multiple identities using GitHub usernames in our dataset, as

xplained in Section 4 . It cannot be excluded that some GitHub

ccounts are shared by multiple contributors (false positives). In

hat case, GAP reports on the combined activity of this account

nstead of the individual activity of each contributor using it. It

annot be excluded either that some contributors use multiple

itHub accounts at the same time (false negatives). In that case,

AP reports on the activity of each account individually, and not

n the combined activity. 

Internal validity concerns choices and factors internal to the

tudy that could influence the observations we made. The main

hreat comes from the range of observations selected to feed to

he model. We decided to rely on a variable time period containing

xactly n observations to ensure that the model is trained with

 fixed amount of data regardless of a contributor’s activity fre-

uency. Choosing a fixed time period (e.g., n days or weeks) might

ead to either a large or a small number of observations, depend-

ng on the contributor’s activity frequency. The choice of n = 20

s discussed and supported in Section 4.2 , where we showed the

mpact of this parameter on the concordance of the model. 

While the technique of survival analysis makes no assump-

ion on the unit of time required to measure time to event, the

hoice of that unit has a direct consequence of how commits

re aggregated and fed to the model. We selected days as unit

f time because it is a good compromise between practicability

nd accuracy. A larger granularity (e.g., weeks ) would lead to

ore accurate predictions but provide less interesting insights for

roject managers. A smaller granularity (e.g., hours ) would lead

o less accurate results, without making them substantially more

nformative from a practical point of view. 

Conclusion validity concerns the degree to which the con-

lusions we derived from our data analysis are reasonable. Our

onclusions are mostly based on the results of the validation of

he model. Since we carefully validated the model following a

olling-origin/walk-forward validation method ( Stein, 2007 ) based

n observed historical data, the conclusions we have drawn are

nlikely to be affected by such threats. 

External validity concerns whether the results and conclusions

an be generalized outside the scope of this study. The main threat

o external validity relates to the dataset we used to validate the

odel. To alleviate a potential selection bias related to the profile

f contributors and projects, we selected a large dataset containing

 wide variety of projects and contributors. The fact that the

elected projects are all distributed through a package registry

onstitutes a possible bias. Indeed, one could expect these projects

o be more mature, exhibiting more stable and less impulsive

ctivity patterns than projects being in an early development

hase. We are confident that the selected dataset is sufficiently

eterogeneous in order not to affect the conclusions obtained, but

e do not claim that it is representative of all possible git projects

nd contributors. 

Although the technique used in this paper can be easily

ransposed to any type of activity and any type of version con-

rol system, we cannot guarantee that it will result in accurate

redictions. For example, git repositories associated with non-

ode-based, personal or experimental projects may exhibit totally

ifferent activity patterns that cannot be captured by the model.

he same argument also holds for other types of activity, such

s pull requests, code reviews, social communication, etc. Other

ersion control systems may give rise to a different notion of

ontributor activity. Due to its decentralized nature, git encourages

he creation of commits regardless of the degree of completion of

he work performed in the local branch. In contrast, centralised

http://github.com/todogroup/todogroup.github.io/blob/master/content/en/guides/shutting-down.md
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ystems such as Subversion encourage contributors to commit

hanges to a repository only when these changes reflect a sin-

le purpose (fixing of a specific bug, addition of a new feature,

tc.). This difference in how work is committed to the repository

ay influence the observed frequency of contributions, and can

herefore affect the generalization of our findings. 

. Conclusion 

Keeping track of the presence or lack of activity of project con-

ributors can be very important for the project’s sustainability. Ex-

sting methods and solutions follow an a posteriori approach, since

hey provide information and insights on the past project activity.

n practice, community managers also need indicators of poten-

ial risks stemming from contributors abandoning their projects.

ocusing on the specific activity of contributing to git software

epositories, there are currently no techniques or automated tools

or predicting the future commit activity of project contributors. 

This paper proposes a technique and associated tool to address

hese issues. In doing so, we hope to enable project managers

nd practitioners to monitor the future development activity in

heir git repositories and deal with contributor abandonment risks

arly, before their departure becomes potentially detrimental to

he project. We presented a probabilistic forecasting model to esti-

ate when the next commit activity of a given git contributor will

ccur. This model relies on survival analysis, a statistical technique

hat we used to estimate a contributor’s probability of committing

gain, based on the past durations between days of observed

ommit activity for that contributor. The model relies on the last

0 observed durations between days of activity per contributor,

hich presents several benefits: (i) it does not require to collect

r process a large amount of data; (ii) little prior knowledge is

equired, making it applicable to short-lived as well as long-lived

rojects; and (iii) since the analysis requires not more than a

ew seconds per project repository, it can be used for real-time

onitoring, even for large communities of project contributors. 

We evaluated the model on more than 7.5K git repositories

orresponding to a wide variety of projects. We showed that

stimations provided by our approach are generally close to the

bserved durations. By analysing the accuracy of the prediction

odel, we found that forecasts with a higher probability are

ostly overestimations, while most of the observed differences

etween predictions for lower probabilities and actual observa-

ions are slight underestimations. We found that relying on the

ast n = 20 observed durations between days of activity provides

he results with the lowest deviation. 

To showcase the practicality of the model, we operationalised

t through the Git Activity Predictor ( GAP ), an open source

ommand-line utility. This tool enables practitioners and re-

earchers to benefit from the proposed forecasting model and

o apply it on sets of git repositories. GAP has built-in support

or identity mapping to anonymise contributors and to merge

dentities (e.g.,to deal with multiple identities, or to combine bot

ctivity), thus both preserving privacy and providing accurate re-

ults. It supports different output formats, including a bar activity

hart visualisation of the recent and predicted commit activities

f contributors. GAP has also been integrated as part of the open

ource GrimoireLab software development analytics platform. 7 

We plan to evaluate and extend the probabilistic model and

ool for other types of project forecasting activities (e.g.,issue

eport interaction, code review or mailing list activity), and to

ombine different types of activity to better understand and

redict the activity dynamics of individual project contributors. In
7 chaoss.github.io/grimoirelab/ 

D  

 

ddition, the model could be extended to the team level, to under-

tand and forecast activity for groups of collaborating contributors

ithin the same project. 
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