
A Variant of Pattern Matching for Multiwords

V. Bruyère1, O. Carton2, A. Decan1, O. Gauwin1, J. Wijsen1

1 Institut d’Informatique, Université de Mons – Belgium
2 LIAFA, Université Paris Diderot - Paris 7 – France

Abstract

Multiwords are words in which a single symbol can be replaced by a
nonempty set of symbols. A pattern w is certain in a multiword M if it
occurs in every word that can be obtained by selecting one single sym-
bol among the symbols provided in each position of M . Motivated by a
problem on incomplete databases, we investigate a variant of the pattern
matching problem which is to decide whether a pattern w is certain in
a multiword M . We study the language CERTAIN(w) of multiwords in
which w is certain. We show that this regular language is aperiodic for
three large families of words and we study the size of its minimal automa-
ton.

1 Introduction

Given a pattern w and a text t, the pattern matching problem is to find all
the occurrences of w in t. There exist efficient algorithms that solve this prob-
lem, like the well-known Knuth-Morris-Pratt algorithm [1] and Boyer-Moore
algorithm [2] (see also Chapters 3 and 4 in [3]).

Several extensions of this problem have been studied. Instead of a single
pattern w, the Aho-Corasick algorithm efficiently finds in a text t all the occur-
rences of words w taken from a finite set of words [4]. A more general problem
is the regular expression matching problem where the pattern is a set of words
specified by a regular expression (see for instance Chapter 7 in [3]).

Other extensions deal with the pattern matching problem by allowing don’t-
care symbols in the pattern w and/or in the text t. In this case, some positions
in the pattern or the text can contain a set of symbols, instead of a single
symbol. A word with don’t-care symbols represents a finite set of (classical)
words obtained by selecting a single symbol among the symbols provided in
each don’t-care position. Therefore, if w is a pattern with don’t-care symbols
and t is a text, the problem consists in finding all the occurrences of words
represented by w in the text t. When w is a pattern and t is a text with don’t-
care symbols, we are interested in finding the occurrences of w in t such that
in each don’t-care position i, the symbol at the corresponding position of w
belongs to the set of symbols of t at position i.

When don’t-care symbols are allowed, most of the existing exact methods for
pattern matching are useless or have to be adapted. One among the first works
in this framework has been presented by Fisher and Paterson in [5]. Without
being exhaustive, let us also mention the recent references [6, 7, 8].

1

The interest in words with don’t-care symbols is driven by applications in
computational biology, cryptanalysis, musicology, and other areas. In compu-
tational biology, DNA sequences may still be considered to match each other if
letter A (respectively, C) is juxtaposed with letter T (respectively, G); analogous
juxtapositions may count as matches in protein sequences. In cryptanalysis, so
far undecoded symbols may be known to match one of a specific set of letters
in the alphabet. In music, single notes may match chords, or notes separated
by an octave may match.

Our problem is motivated by research in incomplete historical databases,
as described in [9]. Incomplete databases represent sets of possible databases,
also called repairs. Given a query, we are interested in answers that are true in
every repair of the incomplete database. The queries ask whether a sequence
w = a1 . . . an is encountered in every repair, i.e. whether in every repair we
can find a sequence t1 . . . tn of successive time points such that a1 holds at t1,
a2 holds at t2, and so on. This problem can be seen as a variant of pattern
matching: given a pattern w and a text t with don’t-care symbols, does w

appear as a factor of each word z represented by t? It is important to notice
that we want to be sure that w appears in each z, and not in some z. In the
database scenario, it is significant to ask whether our queries are first-order
expressible. The reason for this is that if a query is first-order expressible, then
its data complexity is in P (and even in AC0), and it can be encoded in standard
database languages like SQL.

This variant of the pattern matching problem motivated by querying in-
complete databases was first stated in [9] together with several partial results.
Given a pattern w, the authors provide a deterministic finite automaton A(w)
recognizing the set CERTAIN(w) of all words t with don’t-care symbols such
that w is a factor of each word z represented by t. This automaton is a kind
of Knuth-Morris-Pratt automaton (see Chapter 9 of [10]), with a more sophis-
ticated use of the prefixes of w. They also prove that for a particular class
of words w, the regular set CERTAIN(w) is aperiodic, or equivalently [11, 12],
first-order expressible.

In this article, we prove that CERTAIN(w) is aperiodic for three large families
of words w including powers of primitive words (for a power ≥ 3) and powers
of unbordered words. Based on these results, we conjecture the aperiodicity
of CERTAIN(w) for all words w. We also investigate the size of the minimal
deterministic automaton Amin(w) recognizing CERTAIN(w). On one hand, each
state of A(w) consists in a subset of prefixes of w [9]. Hence, the size of A(w)
may be exponential in the length of w. On the other hand, each state of the
Knuth-Morris-Pratt automaton is a prefix of w, so the size of this automaton is
linear in the length of w. We experimentally compute the size of Amin(w) for
a large number of words w over a two-letter alphabet. Surprisingly, in all our

experiments, it is bounded by |w| + ⌊ |w|
2
⌋, and in most cases, it equals |w| + 1,

the size of the Knuth-Morris-Pratt automaton.
In the literature, different terms have been used for words with don’t-care

symbols like indeterminate words [6], partial words, words with holes or jok-
ers [13, 14, 15]. In each case, either the don’t-care symbol means any letter of
the alphabet, or it has to be selected among a subset of the alphabet depending
on its position in the word. In this article, we follow the second approach and
we use the term multiword coined in [9].

2

The remainder of this article is organised as follows. The next section in-
troduces terminology and notations and formalizes the problems we are inter-
ested in. Section 3 contains our main results. It establishes the aperiodicity of
CERTAIN(w) for several large families of words w. These families contain pow-
ers of primitive words (power ≥ 3) and powers of unbordered words. Section 4
concentrates on the size of the minimal automaton recognizing CERTAIN(w).
Based on experiments, we suggest an upper bound on this size which is linear
in |w|, and we give families of words for which this upper bound is tight.

2 Preliminaries

2.1 Multiwords

In this section, we recall the basic definitions and results on multiwords [9].
Let Σ = {a, b, c, . . . } be a finite alphabet of symbols.

Definition 1 A word of length n ≥ 0 is a sequence a1a2 . . . an of symbols. We
denote by |w| the length of w. The empty word, denoted by ǫ, has length 0. The
concatenation of words w1 and w2 is denoted by w1 ·w2 and naturally extends to
sets of words. If S and T are sets of words then S ·T = {w1·w2 | w1 ∈ S,w2 ∈ T }.
If w = p · q, then p is called a prefix of w and q a suffix. A prefix (or suffix) of
w that is distinct from w is called proper. We say that a word w is a factor
of v, denoted by v
 w, if there exist words p and q such that v = p · w · q.
We denote as usual by Σ∗ the set of all words over Σ, and Σ+ = Σ∗ \ {ǫ}. A
word w is called unbordered if no nonempty proper suffix of w is a prefix of w.
A word w ∈ Σ+ is primitive if w = vk implies k = 1.

Definition 2 We define the powerset alphabet as Σ̂ = 2Σ \ {∅}. A multi-

word M = 〈A1, . . . , An〉 is a finite word over the powerset alphabet Σ̂, i.e. Ai ⊆
Σ and Ai 6= ∅ for all i. Given a multiword M = 〈A1, . . . , An〉, we define the set
of words represented by M :

words(M) := {a1a2 . . . an | ∀i ∈ {1, . . . , n} : ai ∈ Ai}.

Let w be a word. We say that a word w is certain in M , denoted M
certain w,
if w is a factor of every word in words(M).

Example 1 The following multiwordM contains two symbols with values {a, b}
and {c, d}. Curly braces are omitted for symbols that are singletons; for exam-
ple, {a} is written as a.

So, for M = 〈a, b, d, a, b, c, a, {a, b}, b, d, a, b, {c, d}, a, b, c, a, b〉, we have:

words(M) = { abdabcaabdabcabcab,

abdabcaabdabdabcab,

abdabcabbdabcabcab,

abdabcabbdabdabcab }.

Hence,M
certain abdabcab because abdabcab is a factor of each word in words(M).

3

Definition 3 Given a word w ∈ Σ+,
we are interested in the language CERTAIN(w) ⊆ Σ̂∗ defined as follows:

CERTAIN(w) := {M ∈ Σ̂∗ | M
certain w}

In the next subsection, we recall known results [9] about the language CERTAIN(w),
and we formulate two problems for which we provide partial answers in the re-
mainder of the article.

2.2 Known results and problems

We first recall a procedure for deciding membership of CERTAIN(w). This proce-
dure is interesting because it directly leads to the construction of a deterministic
finite automaton which accepts CERTAIN(w).

Definition 4 Let u,w ∈ Σ∗ . We note sufpre(u,w) the maximal suffix of u
that is also a prefix of w. For a set S of words, we define sufpre(S,w) =
{sufpre(u,w) | u ∈ S}. We define ⌊S⌋ = S \ (Σ+ · S), that is, ⌊S⌋ is the
smallest set of words satisfying ⌊S⌋ ⊆ S and ⌊S⌋ contains a suffix of every word
in S.

For example, sufpre(abcd, cde) = cd and sufpre(ab, c) = ǫ. For the set S =
{aa, ac, abc, bc, c}, we have ⌊S⌋ = {c, aa}. The following lemma provides a
procedure for deciding membership of CERTAIN(w) [9]:

Lemma 1 Let M = 〈A1, . . . , An〉 ∈ Σ̂∗ and w ∈ Σ+. Let 〈S0, S1, . . . , Sn〉 be
the sequence such that:

• S0 = {ǫ}, and

• for every i ∈ {1, . . . , n}, Si = ⌊sufpre(Si−1 · Ai, w) \ {w}⌋.

Then, M ∈ CERTAIN(w) if and only if Sn is empty.

Example 2 The construction is illustrated in Figure 1 for the word w =
abdabcab and the multiword introduced in Example 1:

M = 〈a, b, d, a, b, c, a, {a, b}, b, d, a, b, {c, d}, a, b, c, a, b〉

The set S8, for instance, is computed from S7 · A8 = {abdabcaa, w}, in which
abdabcaa is replaced with its suffix a, and the word w is removed.

Intuitively, the construction of 〈S0, S1, . . . , Sn〉 for a word w and a mul-
tiword M can be thought of as executing the pattern matching algorithm of
Knuth-Morris-Pratt [1] simultaneously on every word in words(M). In partic-
ular, if every symbol of the multiword is a singleton, this algorithm runs in a
way that is similar to the Knuth-Morris-Pratt algorithm.

Lemma 1 suggests the following construction of a deterministic finite au-
tomaton recognizing CERTAIN(w) [9].

Definition 5 Let P be the set of proper prefixes of w. We define the deter-
ministic finite automaton A(w) = (Q, Σ̂, S0, F, δ) on the powerset alphabet Σ̂.
Its finite set of states is Q = {⌊S⌋ | S ⊆ P}. The initial state is S0 = {ǫ}, and

the final states are F = {∅}. The transition function δ : Q × Σ̂ → Q is defined
by:

δ(S,A) = ⌊sufpre(S · A,w) \ {w}⌋

4

S0 = {ǫ} A10 = {d} S10 = {abd}
A1 = {a} S1 = {a} A11 = {a} S11 = {abda}
A2 = {b} S2 = {ab} A12 = {b} S12 = {abdab}
A3 = {d} S3 = {abd} A13 = {c, d} S13 = {abdabc, abd}
A4 = {a} S4 = {abda} A14 = {a} S14 = {abdabca, abda}
A5 = {b} S5 = {abdab} A15 = {b} S15 = {abdab}
A6 = {c} S6 = {abdabc} A16 = {c} S16 = {abdabc}
A7 = {a} S7 = {abdabca} A17 = {a} S17 = {abdabca}
A8 = {a, b} S8 = {a} A18 = {b} S18 = {}
A9 = {b} S9 = {ab}

Figure 1: Illustration of the construction in Lemma 1.

ǫ {a} {ab} ∅

{a, ab}

{a} {b}

{a, b} {a}

{b}

{b}

{a}

{a, b}

{b}

{a, b}

{a}

{a, b}

{a}

{b}

{a, b}

Figure 2: The automaton A(abb) over Σ = {a, b}.

For instance, Figure 2 shows the reachable states of A(abb) for the alphabet
Σ = {a, b}. The following proposition states that CERTAIN(w) is regular.

Proposition 1 ([9]) For every word w, A(w) recognizes CERTAIN(w).

Note that the size of A(w) may be exponential in |w|, as the states are subsets
of prefixes of w.

Problem 1 Is the size of the minimal automaton recognizing CERTAIN(w) poly-
nomially bounded in |w|?

We recall that the Knuth-Morris-Pratt automaton of w associated to the
pattern matching algorithm of Knuth-Morris-Pratt (as done in [10]) has a linear
size equal to |w|+ 1.

Another result of [9] states that CERTAIN(w) is aperiodic for a particular
family of words w.

Definition 6 A language L over an alphabet Σ is aperiodic if there exists k > 0
such that for every word p, u, q ∈ Σ∗, we have:

p · uk · q ∈ L ⇐⇒ p · uk+1 · q ∈ L

5

Proposition 2 ([9]) Let a ∈ Σ. If w is a word over Σ\{a}, then CERTAIN(a · w)
and CERTAIN(w · a) are aperiodic.

The question whether CERTAIN(w) is aperiodic for all w has already been raised
in [9].

Problem 2 Determine if, for every word w ∈ Σ+, CERTAIN(w) is aperiodic.
This corresponds to proving that for every w ∈ Σ+, there exists k > 0 such that
for all P,U,Q ∈ Σ̂∗,

P · Uk ·Q
certain w ⇐⇒ P · Uk+1 ·Q
certain w

3 Aperiodicity

In this article we show that CERTAIN(w) is aperiodic for several large families of
words w. Our proofs are based on two main lemmas. Lemma 2 states that one
can avoid one of the two implications of Definition 6 for proving aperiodicity.
Lemma 3 is the core tool in all our proofs.

Lemma 2 Given a word w ∈ Σ+, CERTAIN(w) is aperiodic if there exists k > 0

such that for all P,U,Q ∈ Σ̂∗,

P · Uk ·Q
certain w =⇒ P · Uk+1 ·Q
certain w

Proof.[Sketch] The proof is based on the following property of regular lan-
guages, that can be applied to CERTAIN(w) since it is regular (see Chapter 1

of [16]). There exist n ≥ 0, p ≥ 1 such that ∀m ≥ n, ∀P,U,Q ∈ Σ̂∗,

P · Um ·Q
certain w ⇐⇒ P · Um+p ·Q
certain w

2

Definition 7 Given a word w = a1a2 · · · an, we define the positions in w as the
set {0, 1, . . . , n}. For 1 ≤ i ≤ n− 1, position i of w can be seen as the position
between ai and ai+1. Position 0 precedes the first letter, while position n follows
the last letter.

Lemma 3 Let w ∈ Σ+ be a word. Let P,U,Q ∈ Σ̂∗ be multiwords such
that P · Uk · Q
certain w. Let p ∈ words(P), q ∈ words(Q) and u ∈
words(Uk+1). If m = p · u · q does not contain w as a factor, then for every
position π in m, if |P | ≤ π ≤ |P · Uk| then there exist positions π′ < π and
π′′ > π+ |U | in m such that the nonempty factors x (resp. y) between π′ and π

(resp. π + |U | and π′′) satisfy w = x · y.

The situation in Lemma 3 is depicted in Figure 3. The couple (x, y) men-
tioned in Lemma 3 is called a decomposition of w at position π.

Proof. Let π be a position in m such that |P | ≤ π ≤ |P · Uk|. We can
assume m = p ·v1 ·u1 ·v2 ·q with |p · v1| = π and |u1| = |U |. Let m′ = p ·v1 ·v2 ·q.
From P · Uk · Q
certain w and m′ ∈ words(P · Uk ·Q), we have m′

 w. The
situation is:

6

m
x y

π′ π π + |U | π′′

|U |

Figure 3: Decomposition (x, y) of w at position π.

m

π′ |U | π |U |

xa y

sa t

Figure 4: Configuration in the proof of Proposition 2.

m =

1w
︷ ︸︸ ︷
p · v1 · u1 · v2 · q

m′ =

1w
︷ ︸︸ ︷
p · v1

1w
︷ ︸︸ ︷
v2 · q︸ ︷︷ ︸

w

But m 1 w implies p · v1 1 w and v2 · q 1 w, so it must be the case that p · v1
ends with some nonempty prefix x of w and v2 · q starts with some nonempty
suffix y of w and that w = x·y. We can take π′ = π−|x| and π′′ = π+|u1|+|y|. 2

In other words, this lemma states that, for every position π of m (under the
hypotheses), there exist a prefix x of w just before π and a suffix y of w just
after π + |U |, such that x · y = w. To illustrate this lemma, we can use it to
rewrite the proof of Proposition 2.

Proof.[Proposition 2] We show that Lemma 2 can be applied, with k =
|w| + 1. Let P , U and Q be multiwords such that P · Uk ·Q
certain w.
Let m = p · u · q be such that p ∈ words(P), u ∈ words(Uk+1) and q ∈ words(Q).
Assume, for contradiction, that m 1 w. Let us consider the position π =
|p|+ |w| + |U |.
To apply Lemma 3 at π, we have to show that |P | ≤ π ≤ |P · Uk|. Obvi-
ously, |P | ≤ π. Notice that |w| ≤ |Uk−1|, because |w| = k−1 and |U | > 0 (other-
wise we directly obtain a contradiction from P ·Uk ·Q
certain w andm 1 w). By
adding |p|+|U | on both sides of the inequality |w| ≤ |Uk−1|, we get π ≤ |P · Uk|.
Thus we can apply Lemma 3 at position π, and get a decomposition (x, y) of w
at π, as depicted in Figure 4. Let v1, v2 be such that m = p · v1 · v2 · q
and |p · v1| = π. Hence, p · v1 ends with x = a · x′. But since x is a proper
nonempty prefix of w, and π = |p|+|w|+|U |, v1 ends with x, i.e. v1 = v′1 ·a·x

′ for

7

|v|

u1 u2

u′
1 u′

2

Figure 5: A forbidden situation for a primitive word v.

some v′1. Consider now the position π′ = |p · v′1| − |U |. Obviously, π′ ≤ |P · Uk|
because π′ ≤ π. We also have |P | ≤ π′, because π′ ≥ π − |U | − |w|. So we use
Lemma 3 to obtain the decomposition (s, t) of w at position π′ (see Figure 4).
Therefore, t is a proper nonempty suffix of w, and its first letter is “a” because
it is the first letter of x. This contradicts the definition of w. 2

We now present three large families of words w for which we prove the
aperiodicity of CERTAIN(w). As the related proofs are long and quite technical,
we only give a sketch for convenience. The three proofs are based on two main
arguments. The first one is Lemma 3, and the second one uses a notion of
synchronization, that differs for each family.

The first family contains powers (≥ 3) of a primitive word. This is a very
interesting family since it is well known [17] that every word is a power (≥ 1)
of a primitive word.

Theorem 1 If w = vk · v′ where v is primitive, k ≥ 3, and v′ is a (possibly
empty) proper prefix of v, then CERTAIN(w) is aperiodic.

Proof.[Sketch] Consider a word m over Σ, with a factor u of size |v|. As v
is primitive, there is at most one pair (u1, u2) ∈ Σ∗ × Σ+ such that u = u1 · u2

and u2 · u1 = v. In other words, for the considered w, when two prefixes of w
share a common window of size |v|, they have to synchronize according to v. For
instance, the situation depicted in Figure 5 cannot hold for a primitive word v.
This property still holds for a window of size |v| − 1. This can be proved using
Fine and Wilf’s theorem [18].

The complete proof is based on this synchronizing property and our key
lemma (Lemma 3). It is rather long and technical. 2

The second family is composed of every power of an unbordered word. Notice
that it contains the words of Proposition 2.

Theorem 2 If w = vk with v an unbordered word and k ≥ 1, then CERTAIN(w)
is aperiodic.

Proof.[Sketch] The proof is in the vein as the previous one. It is based on
Lemma 3 and the following synchronization property. As v is unbordered, a
prefix of w cannot overlap with a suffix of w, except if it is a power of v. The
complete proof is again long. 2

Given a symbol a ∈ Σ, the last family contains words w in which one among
the distances between two consecutive a’s is smaller than the other ones.

8

Proposition 3 Let a ∈ Σ. Let w = r0 · a · r1 · a · · ·a · rn with

1. a not in r0 · r1 · · · rn

2. ∃i ∈ {1, . . . , n− 1}, ∀j 6= i ∈ {0, . . . , n}, |ri| < |rj |

Then CERTAIN(w) is aperiodic.

Proof.[Sketch] We show Lemma 2 for k chosen large enough. Let P,U

and Q be multiwords such that P · Uk · Q
certain w. Assume by contradiction
that there exists a wordm = p·u·q such that p ∈ words(P), u ∈ words(Uk+1), q ∈
words(Q), and m 1 w. The proof is in two parts. By Lemma 3, the first
part states that there exists some position π in m such that in the decomposi-
tion (x, y) at position π, either x or y contains the factor a ·ri ·a of w. Again by
Lemma 3, the second part shows that m must contain w as a factor by choosing
appropriate positions π′ for decompositions around the factor a · ri · a located
in x or y in the first step. This leads to the contradiction. 2

The three preceding families do not cover all the words w ∈ Σ+. Neverthe-
less, we are convinced that aperiodicity of CERTAIN(w) holds for every w.

4 Size of the minimal automaton

This section investigates Problem 1. The size of the minimal deterministic au-
tomaton1 recognizing a language gives insights on the algebraic structure of
this language. A small size of this automaton for CERTAIN(w) could imply
strong properties of this language. We did a number of experiments in order
to study the size of the minimal deterministic automaton Amin(w) recogniz-
ing CERTAIN(w), over the alphabet Σ = {a, b}. Other experiments on larger
alphabets confirmed these observations.

Exhaustive experiments. The first experiments concern an exhaustive study
of the set of words w over Σ = {a, b} such that 1 ≤ |w| ≤ 16.

We obtained some surprising results:

• No minimal automatonAmin(w) has more than |w|+⌊ |w|
2
⌋ states for |w| ≥ 2.

• A majority of minimal automata Amin(w) has |w|+1 states, as in Knuth-
Morris-Pratt automata.

This means that for these words w, each state of A(w) having several
prefixes can be merged with a state having only one prefix, i.e. a state
(equivalent to a state) of the Knuth-Morris-Pratt automaton.

The situation is depicted in Figure 6, for all words of length 14. For these
words, the size of Amin(w) ranges from 15 to 21. For each size in this
range, the number of minimal automata of this size is indicated.

• The distribution of the number of minimal automata for each size of au-
tomata is quite similar for each length of w. Figure 7a presents this
distribution for |w| ranging from 1 to 16 (the number of automata is in
logscale).

1In this article, the size of an automaton is its number of states.

9

-1000

0

1000

2000

3000

4000

5000

6000

7000

15 16 17 18 19 20 21

n
u
m

b
e
r

|Amin(w)|

|w|=14

Figure 6: Distribution of the number of automata for words w of length 14.

1

10

100

1000

10000

100000

0 5 10 15 20 25

n
u

m
b

e
r

o
f
a

u
to

m
a

ta

|Amin(w)|

|w|=15

|w|=10

|w|=5

(a) Exhaustive from length 1 to 16

1

10

100

1000

10000

100000

15 20 25 30 35

n
u

m
b

e
r

o
f
a

u
to

m
a

ta

|Amin(w)|

|w|=20 |w|=25

(b) Random from length 17 to 26

Figure 7: Distribution of the number of minimal automata for each size of
automata

Non-exhaustive experiments. We also ran a lot of experiments for random
words of length up to 26. These experiments (about 250.000 words) never gave
a counter-example for these three observations.

Figure 7b shows the distribution of the number of automata for the random
experiments. Data are represented in the same way as in Figure 7a.

Based on these experiments, we want to reformulate Problem 1 in a more
precise way:

Problem 3 Determine if, for all w ∈ Σ∗ with |w| ≥ 2, the size of the minimal

automaton recognizing CERTAIN(w) is at most |w| + ⌊ |w|
2
⌋.

Families of words w maximizing |Amin(w)|. Through our experiments we
identified several families of words w for which the minimal automaton Amin(w)
reaches what we think to be the highest number of states. These families are:

10

ǫ

a . . .

k−1

states

ak+1 ak+2 ak+2b ak+2ba . . .

k−2

states

ak+2bak

∅ak+2, ak+2b

ak+2, ak+2ba

. . .k−2

states

ak+2, ak+2bak

ak+1, ak+2b

a
a a a b a a a

b

a, {a, b}

a

∗

{a, b}

a

a

a

ba

{a, b}

a

Figure 8: Automaton A(w) for w = ak+2bakb.

• ak+2bakb (for 0 ≤ k)

• ak+2bajbakbajb (for 0 < j < k)

• ak+3bakb (for 0 ≤ k)

• ak+3bajbakbajb (0 < j < k)

For the first family, i.e. w = ak+2bakb, we explicitly construct the minimal

automaton Amin(w) and we show that it has a size of 3k + 6 = |w| + ⌊ |w|
2
⌋.

Proposition 4 Let k ≥ 0. Let w = ak+2bakb. The minimal automaton that

recognizes CERTAIN(w) has |w| + ⌊ |w|
2
⌋ states.

Proof.[Sketch] Let w = ak+2bakb with k ≥ 0. We use the procedure de-
scribed in Definition 5 to construct the automaton A(w). The resulting automa-
ton is illustrated in Figure 8. Notice that for simplicity, the lacking transitions all
lead to state {ǫ} and the non-reachable states have not been drawn. The proce-
dure ensures that this automaton recognizes exactly the language CERTAIN(w).

It is easy to see that the state in gray is equivalent to the state {ak+2, ak+2b}
so it can be merged with it. It can also be shown that the remaining states can-
not be merged. This is done by exhibiting words that belong to the residual
language of a first state, but not to the residual language of a second state. 2

5 Conclusions and perspectives

A multiword M represents a set words(M) of words. Given a word w, we said
that w is certain in M if it occurs in every word represented by M . We study

11

the set CERTAIN(w) which contains every multiword in which w is certain. In
particular, motivated by the problem of querying incomplete databases, we are
interested in the aperiodicity of CERTAIN(w). We prove it for three large fami-
lies of words w that contain in particular powers of primitive words (power ≥ 3)
and powers of unbordered words.

We also consider the size of the minimal deterministic automaton Amin(w)
recognizing CERTAIN(w). Regarding our numerous experiments, we suggest
an upper bound for this size and we show that it is reached by the family of
words w = akbak+2b.

Based on these results, we conjecture the aperiodicity of CERTAIN(w) for all

words w and a size of Amin(w) lower than or equal to |w| + ⌊ |w|
2
⌋.

References

[1] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 1977.

[2] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Commu-
nications of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[3] M. Crochemore and W. Rytter, Text Algorithms. Oxford University Press,
1994.

[4] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to biblio-
graphic search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340,
1975.

[5] M. Fischer and M. Paterson, “String matching and other products,” SIAM-
AMS Proceedings, Complexity of Computation, vol. 7, pp. 113–125, 1974.

[6] J. Holub, W. F. Smyth, and S. Wang, “Fast pattern-matching on indeter-
minate strings.,” Journal of Discrete Algorithms, vol. 6, no. 1, pp. 37–50,
2008.

[7] M. S. Rahman, C. S. Iliopoulos, and L. Mouchard, “Pattern matching in de-
generate DNA/RNA sequences,” in Workshop on Algorithms and Compu-
tation (WALCOM) (M. Kaykobad and M. S. Rahman, eds.), pp. 109–120,
Bangladesh Academy of Sciences (BAS), 2007.

[8] G. Kucherov, L. Noé, and M. A. Roytberg, “Subset seed automaton,” in
Proceedings of the 12th International Conference on Implementation and
Application of Automata (CIAA), pp. 180–191, Springer, 2007.

[9] V. Bruyère, A. Decan, and J. Wijsen, “On first-order query rewriting for
incomplete database histories,” in Proceedings of the 16th International
Symposium on Temporal Representation and Reasoning (TIME), pp. 54–
61, 2009.

[10] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[11] M. P. Schützenberger, “On finite monoids having only trivial subgroups,”
Information and Control, vol. 8, no. 2, pp. 190–194, 1965.

12

[12] R. McNaughton and S. Papert, Counter-free Automata. Cambridge, MA:
MIT Press, 1971.

[13] J. Berstel and L. Boasson, “Partial words and a theorem of fine and wilf,”
Theor. Comput. Sci., vol. 218, no. 1, pp. 135–141, 1999.

[14] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words (Discrete
Mathematics and Its Applications). Chapman & Hall/CRC, 2007.

[15] M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings. Cam-
bridge University Press, 2007. 392 pages.

[16] J.-É. Pin, Varieties of Formal Languages. North Oxford, London and
Plenum, New-York, 1986.

[17] M. Lothaire, Combinatorics on words. Cambridge University Press, 1997.

[18] N. J. Fine and H. S. Wilf, “Uniqueness theorems for periodic functions,”
Proceedings of the American Mathematical Society, vol. 16, pp. 109–114,
1965.

13

