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Abstract—GitHub Actions was introduced in 2019 and con-
stitutes an integrated alternative to CI/CD services for GitHub
repositories. The deep integration with GitHub allows reposi-
tories to easily automate software development workflows. This
paper empirically studies the use of GitHub Actions on a dataset
comprising 68K repositories on GitHub, of which 43.9% are using
GitHub Actions workflows. We analyse which workflows are
automated and identify the most frequent automation practices.
We show that reuse of actions is a common practice, even if
this reuse is concentrated in a limited number of actions. We
study which actions are most frequently used and how workflows
refer to them. Furthermore, we discuss the related security
and versioning aspects. As such, we provide an overview of
the use of GitHub Actions, constituting a necessary first step
towards a better understanding of this emerging ecosystem and
its implications on collaborative software development in the
GitHub social coding platform.

Index Terms—GitHub Actions, continuous integration, collab-
orative software development, workflow automation

I. INTRODUCTION

Open source software (OSS) development is a continuous,
highly distributed and collaborative endeavour [1]. Develop-
ment of OSS projects faces many socio-technical challenges
[2]–[4]. The multitude of tools (e.g., version control systems,
software distribution managers, bug and issue trackers) and
development-related activities makes it very challenging for
contributor communities to keep up with the rapid pace of
producing and maintaining high-quality software releases.

Automated workflows were introduced to automate numer-
ous repetitive social or technical activities that are inherently
part of the collaborative software development process. Con-
tinuous integration, deployment and delivery (CI/CD) have
become the cornerstone of collaborative software develop-
ment and DevOps practices. Well-known examples of CI/CD
services are Travis, Jenkins, CircleCI and TeamCity. They
automate the integration of code changes from multiple con-
tributors into a central repository where automated builds, tests
and code quality checks run.

GitHub is by far the largest social coding platform, hosting
the development history of millions of collaborative software
repositories, and accommodating over 73 million users in
2021 [5]. GitHub publicly announced the beta version of
GitHub Actions (abbreviated to GHA in the remainder of
this paper) in October 2018 based on popular demand, and in

response to GitLab’s integrated CI/CD support [6]. In August
2019, GitHub officially began supporting CI through GHA,
and the product was released publicly in November 2019.

GHA [7] allows the automation of a wide range of tasks
based on a variety of triggers such as commits, issues, pull
requests, comments, schedules, and many more. Its deep
integration into GitHub implies that GHA can be used not
only for executing test suites or deploying new releases
as in traditional CI/CD services, but also to facilitate code
reviews, communication, dependency and security monitoring
and management, etc. GHA also promotes the use and sharing
of reusable components, called actions, in workflows. These
actions are distributed in public repositories and on the GitHub
Marketplace. They allow workflow developers to easily in-
tegrate specific tasks (e.g., set up a specific programming
language environment, publish a release on a package registry,
run tests and check code quality) without having to write the
corresponding code.

Since its public release in November 2019, GHA has
become the most dominant CI/CD service, only 18 months
after its introduction [8]. Its Marketplace of reusable actions
has been growing exponentially ever since, reaching 12K
reusable actions in February 2022. It is therefore fair to
say that GHA has become a software ecosystem of its own,
comparable to ecosystems of reusable software libraries (such
as npm, RubyGems, CRAN, Maven, and PyPI) that have been
empirically studied by many researchers in recent years (e.g.,
[9]–[14]).

The emerging GHA ecosystem is worthy of being empiri-
cally studied in its own right since it is likely to suffer from
the same issues related to dependency management, security
vulnerabilities, outdated or obsolete components, backward
compatibility, and so on. This article therefore quantitatively
studies the use of GHA in 68K repositories on GitHub. We
analyse which workflows are automated and identify the most
frequent automation practices. We show that reuse of actions
is a common practice and identify which actions are reused
and how. As such, we provide an overview of the use of
GHA, a necessary first step towards a better understanding
of the emerging GHA ecosystem and its implications on
software development in GitHub repositories. More concretely,
we answer the following research questions:



• What are the characteristics of GitHub repositories using
GHA workflows?

• Which kinds of workflows are automated?
• What are the most frequent jobs in workflows?
• What are the automation practices?
• Which actions are reused and how?
• Which versioning practices are being used?
The remainder of this paper is structured as follows. Sec-

tion II presents related work. Section III introduces some of
the core concepts of GHA and the data extraction process.
Sections IV to IX address the research questions. Section X
discusses the findings and their implications. Section XI
presents the threats to validity of the research, and Section XII
concludes.

II. RELATED WORK

Continuous integration has been introduced by Fowler and
Foemmel in their seminal blog in 2000 [15]. They outlined 10
core CI practices aiming at increasing the speed of software
development and improving software quality. Among others,
they stressed fully automated and reproducible builds and tests
that run several times a day. Elaszhary et al. [16] discuss the
benefits and challenges of these practices in three software-
producing companies. They found that these practices are
broadly implemented but how they are implemented varies
depending on their perceived benefits, the context of the
project, and the CI/CD tools used by the organization. They
call for more research to understand these differences and
how they impact software development and quality. Hilton
et al. [17] report on a mixed-methods study to analyse the
usage, costs and benefits of continuous integration in open-
source projects. They found that CI/CD is widely adopted by
the most popular projects and that CI/CD usage continues to
grow. They also provide evidence that CI/CD helps projects
release more often. Vasilescu et al. [18] found quantitative
evidence that usage of certain CI/CD services improves team
productivity in GitHub projects, allowing teams to integrate
more external contributions without a decrease in code quality.
Lamba et al. [19] studied the spread of CI/CD and quality
assurance tools in npm package repositories. They notably
show that repositories tend to stick to a given CI/CD tool
once they adopt it. In addition, by investigating differences in
characteristics between early and late adopters, they found that
social factors play a significant role in tool adoption. Recently,
Soares et al. [20] conducted a systematic literature review on
the impact of CI/CD on software development. By analysing
empirical evidence from 101 papers ranging from 2003 to
2019, they found that existing research mostly revealed the
positive effects of CI/CD on software development, and that
further studies are necessary to better understand the trade-
offs between adopting CI/CD and overcoming its inherent
challenges.

There is a plethora of studies focusing on the use of Travis
in GitHub projects [21]–[29]. Vasilescu et al. [21] empirically
explored the use of Travis in 918 GitHub projects. They found
that projects using Travis have more pull requests accepted,

merged, and rejected without a decrease in quality measured
in terms of reported bugs. Cassee et al. [23] investigated the
impact of Travis on the social aspects of software develop-
ment, focusing on the code review practices in 685 GitHub
projects. Their results show that projects using Travis tend
to have fewer discussions in their pull requests, suggesting
that developers perform the same amount of work with less
communication after the adoption of Travis. Beller et al. [26]
analysed failures in over 2,5 million code builds on Travis.
They found that testing is the single most important reason
why CI/CD builds fail. They also found that the use of multiple
integration environments leads to 10% more failures being
caught at build time. Widder et al. [29] conducted a mixed-
methods study to identify the reasons why projects decided to
abandon the use of Travis. By analysing a thousand projects
that stopped using Travis between 2011 and 2017, they found
that long build times, CI/CD consistency across projects, lack
of tests and difficulty to troubleshoot a build failure are among
the most frequent reasons to abandon Travis. Zampetti et
al. [22] performed a fine-grained mixed-methods study on
the evolution of specific Travis pipelines. They analysed 615
CI/CD pipeline configuration change commits, and proposed
16 different metrics to capture how Travis pipelines evolve
and get restructured over time.

Golzadeh et al. [8] conducted a quantitative study aiming
to better understand the rapidly evolving CI/CD landscape on
GitHub. By analysing the use of 20 different CI/CD services
from 2012 to 2021 in 91K+ active npm repositories, they
observed that GHA has become the most dominant CI/CD
service only 18 months after its introduction. They also found
that the introduction of GHA coincides with a decreasing
adoption rate and an increasing discontinuation rate for other
CI/CD services, especially for Travis. While this study showed
that traditional CI/CD services on GitHub are getting replaced
rapidly by GHA, only very few research articles have studied
GHA itself. Kinsman et al. [30] quantitatively analysed the
impact of adopting GHA in 3,190 repositories. Their results
indicate that the adoption of GHA increases the number of
rejected pull requests and decreases the number of commits
in merged pull requests. By manually inspecting 209 issues
related to GHA, they concluded that developers have a pos-
itive perception of GHA. Valenzuela-Toledo and Bergel [31]
investigated the use and maintenance of GHA workflows in
10 popular GitHub repositories. They manually inspected 222
commits related to workflow changes and determined 11 dif-
ferent types of workflow modifications. They also uncovered
a number of deficiencies in GHA workflow production and
maintenance, and call for adequate tooling to support creating,
editing, refactoring, and debugging GHA workflow files.

III. METHODOLOGY

A. About GHA

To enable GHA on a repository, one has to create one or
more YAML files, each describing a single GHA workflow,
and store them in the .github/workflows folder. Fig. 1



name : Example o f a workflow f i l e
on :

push :
p u l l r e q u e s t :
s c h e du l e :

− cron : ”0 6 * * 1”
jobs :

t e s t :
name : T e s t p r o j e c t
runs −on : ubuntu − l a t e s t
s t e p s :

− uses : a c t i o n s / checkout@v2
− name : S e t up Python

uses : a c t i o n s / s e t u p −python@v2
with :

python − v e r s i o n : 3 . 9
− name : I n s t a l l dependency

run : p i p i n s t a l l p y t e s t
− name : Execu te t e s t s

run : p y t e s t

Fig. 1. Example of a GHA workflow file.

shows an example of a GHA workflow file.1 A workflow
defines the set of events (e.g., a push, a pull request, or
a scheduled event) that trigger the execution of a set of
jobs. A job may reuse an existing workflow through the
uses: key. Alternatively, a job defines a list of steps that
will be sequentially executed. Steps are the smallest units
of work in a workflow. A step can specify through the
run: key the commands that will be executed (e.g., pip
install pytest) or it can delegate its task by calling
a predefined action or Dockerfile through the uses: key
(e.g., uses: actions/setup-python@v2 or uses:
docker://alpine:3.8). An action is an individual task
that can be shared for reuse on a public GitHub repository and
on the GitHub Marketplace.2 Developers can use actions in
steps to avoid having to write explicitly the various commands
that need to be executed. Actions can access the GitHub API
to interact with repositories (e.g., to create a comment in a
pull request for test reports), or any third-party API (e.g., to
deploy a new release on PyPI). To obtain more information
about GHA, the interested reader is invited to consult the
official GitHub documentation3 or Chandrasekara and Herath’s
book [7].

B. Data Extraction

To conduct an empirical study on the use of GHA in
software development repositories, we need a large collection
of GitHub repositories. The dataset should exclude repositories
that are used only for experimental or personal reasons, or that
show no or little traces of actual software development activ-
ity [32]. We relied on the SEART GitHub search engine [33] to
obtain a list of candidate repositories. We queried the tool on
2022-01-24 to get all non-fork repositories that were created
before 2021, which were still active in 2021, and had at least

1See https://github.com/pandas-dev/pandas/blob/68f763e7/.github/
workflows/code-checks.yml for a more elaborate example of a workflow file.

2https://github.com/marketplace?type=actions
3https://docs.github.com/en/actions

100 commits and 100 stars. We obtained 67,870 repositories
satisfying these criteria.

On 2022-01-24 we locally cloned these repositories
to look for the presence of YAML files in the
.github/workflows folder of their default branch.
We parsed these files to check whether they define a GHA
workflow, and if applicable, we extracted the relevant
data about the workflow (e.g., name, events), about the
jobs configured in the workflow (e.g., name, uses: key,
steps) and about the steps defined in these jobs (e.g.,
name, commands, uses: key). At the end of this process,
our dataset covers 67,870 repositories containing 70,278
workflows, 108,500 jobs, and 567,352 steps. The remainder
of this article presents what we found in these repositories,
workflows, jobs, and steps (including their actions). The
data and code to replicate the analysis are available on
doi.org/10.5281/zenodo.6634682.

IV. WHAT ARE THE CHARACTERISTICS OF GITHUB
REPOSITORIES USING GHA WORKFLOWS?

Not all GitHub repositories make use of GHA. Out of
the 67,870 repositories contained in the dataset, 29,778 of
them (i.e., 43.9%) contain at least one workflow file. Table I
reports on the number and proportion of repositories having a
workflow file, distinguishing repositories based on their main
programming language (as specified in the repository metadata
on GitHub).

TABLE I
NUMBER AND PROPORTION OF REPOSITORIES USING GHA WORKFLOWS,

GROUPED BY MAIN PROGRAMMING LANGUAGE.

repositories using GHA workflows
language # % % language % repo.
JavaScript 13,542 19.6% 34.9% 15.9%
Python 12,319 17.8% 45.9% 19.0%
TypeScript 6,362 9.2% 58.5% 12.5%
Java 6,105 8.8% 39.2% 8.0%
C++ 5,701 8.2% 40.9% 7.8%
Go 4,988 7.2% 57.2% 9.6%
C 4,314 6.2% 36.1% 5.2%
PHP 4,005 5.8% 48.2% 6.5%
C# 3,630 5.3% 34.6% 4.2%
Ruby 2,599 3.8% 50.8% 4.4%
Shell 2,327 3.4% 33.2% 2.6%
Swift 1,411 2.4% 34.4% 1.6%
Kotlin 1,150 1.7% 56.9% 2.2%
other 694 1.0% 17.7% 0.4%

We observe from the fourth column that the proportion of
repositories with GHA workflows varies from one language to
another. It ranges from 33.2% (for Shell) to 58.5% (for Type-
Script). For more recent languages such as TypeScript, Go,
Kotlin, and Ruby, the majority of repositories are using GHA
workflows. The top three languages (JavaScript, Python and
TypeScript) together account for nearly half of all repositories
in the dataset (46.6%, third column) and nearly half of the
repositories defining a workflow (47.4%, last column).

Since workflows help developers to automate some of
the repetitive tasks that are inherently part of the software
development process, we expect larger repositories (e.g., those

https://github.com/pandas-dev/pandas/blob/68f763e7/.github/workflows/code-checks.yml
https://github.com/pandas-dev/pandas/blob/68f763e7/.github/workflows/code-checks.yml
https://github.com/marketplace?type=actions
https://docs.github.com/en/actions
doi.org/10.5281/zenodo.6634682


TABLE II
COMPARISON OF CHARACTERISTICS FOR GITHUB REPOSITORIES WITH

AND WITHOUT GHA WORKFLOWS.

median effect size
characteristic with without Cliff’s δ interpretation
pull requests 124 41 0.384 medium
contributors 20 11 0.277 small
commits 598 344 0.229 small
issues 105 59 0.227 small
branches 5 4 0.139 negligible
age (months) 71 77 −0.082 negligible
stars 398 334 0.078 negligible
size (MB) 5,878 5,099 0.025 negligible
forks 84 80 0.018 negligible
watchers 24 25 −0.013 negligible

having more contributors or pull requests) to rely more
frequently on workflows. We compared the distributions of
several characteristics between GitHub repositories with and
without workflows: size in MB, number of pull requests, com-
mits, issues, contributors, branches, stars, forks and watchers.
We also considered the age of the repositories in months.
A statistical difference was consistently confirmed for all
characteristics (p < 0.004) by Mann-Whitney-U tests [34]
after controlling for family-wise error rate with the Bonferroni-
Holm method [35].

Table II reports the median value for each considered
characteristic, as well as the effect size of the observed
difference using Cliff’s δ [36] and its interpretation [37]. We
observe with medium or small effect size that repositories
with workflows exhibit a higher number of pull requests,
contributors, commits, and issues. We also observe, though
with negligible effect size, that repositories with workflows
tend to have more branches, stars, forks, and a larger size.
Repositories with workflows are also younger and have fewer
watchers.

More than 4 out of 10 GitHub repositories use work-
flows. Projects mostly written in JavaScript, Python, or
TypeScript account for nearly half of the repositories and
one third of the repositories using workflows. Repositories
with GHA workflows tend to have more contributors, pull
requests, commits, and issues.

V. WHICH KINDS OF WORKFLOWS ARE AUTOMATED?

We found a total of 70,278 workflows in 29,778 repositories,
hence an average of 2.4 workflows per repository. Nearly
half of these repositories (49.3%) defined a single workflow.
The remaining 50.7% repositories define two (22.6%), three
(11.7%), or four workflows (6.3%), even if we found dozens
of repositories with 20 or more workflows.

A workflow can be triggered by one or more events.
The events that trigger a workflow can be chosen from a
large list of events corresponding to the different ongoing
activities within a repository (e.g., commits pushed, pull
requests created or updated, comments created). GHA also
proposes special events such as schedule to execute work-

flows on a regular basis or workflow_dispatch and
repository_dispatch to manually trigger a workflow.4

Table III reports the 10 most frequent events occurring in
workflows and the proportion of workflows using them. Since
repositories can have more than one workflow, we also report
on the proportion of repositories having one of their workflows
triggered by these events.

TABLE III
TOP 10 EVENT TYPES IN GITHUB WORKFLOWS AND REPOSITORIES.

event % workflows % repositories
push 41.8% 63.4%
pull_request 34.1% 56.3%
workflow_dispatch 8.3% 15.4%
schedule 8.1% 16.1%
release 3.0% 6.2%
pull_request_target 1.3% 2.6%
issues 1.0% 2.0%
repository_dispatch 0.7% 2.0%
issue_comment 0.6% 1.2%
workflow_run 0.4% 0.8%

The most frequent events, push and pull_request,
are used by more than half of the repositories. These events
correspond to what is typically monitored by traditional CI/CD
services and are tightly related to the technical aspects of
software development (e.g., test, build and deploy code). The
next most frequent events are workflow_dispatch and
schedule. The former allows to manually trigger a workflow
using the GitHub API or user interface, while the latter allows
triggering a workflow at a scheduled time.

The most frequent events that can be associated with more
social activities are issues and issue_comments. These
events, used by 2.0% and 1.2% of the repositories respectively,
react to the creation of an issue or a comment. They can
be used, for example, to welcome newcomers, triage issues
or ensuring adherence to the Contributor Licence Agreement
(CLA).

In order to gain some insight into the purpose of these
workflows, we analysed the most common workflow names.
Although the name: key of a workflow is optional, nearly all
workflows in our dataset define it (99.1%). We found 23,056
distinct names out of the 69,618 workflows defining one. There
are 554 names used by at least 10 repositories, and some of
them are frequently used by a large number of repositories,
such as ci (8.2% of the repositories), test(s) (5.1%), build
(3.9%), codeql (3.5%), release (2.9%), and lint (1.0%). The
first name explicitly referring to a “social” purpose is mark
stale issues and pull requests and is used by 0.5% of the
repositories.

Half of the repositories using GHA define two or more
workflows. Workflows are mostly triggered by push and
pull request events. The large majority of workflows appear
to be used for technical development-related purposes.

4The complete list of supported events can be found on https://docs.github.
com/en/actions/using-workflows/events-that-trigger-workflows.

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows


VI. WHAT ARE THE MOST FREQUENT JOBS IN
WORKFLOWS?

A workflow defines one or more jobs that will be executed
in parallel (by default). We found 108,500 jobs in the 70,278
workflows in the dataset, hence an average of 1.5 jobs per
workflow. The large majority of workflows define a single job
(77.8%) or two jobs (10.5%). However, since a repository can
define multiple workflows, the number of jobs per repository
is higher (3.6 on average). For instance, 65.5% of the repos-
itories have two or more jobs defined in the totality of their
workflows, and 21.3% even have 5 or more jobs.

As mentioned in Section III, a job either defines a list of
steps that will be executed to achieve its purpose, or can use
(through the uses: key) another workflow from any public
repository. In the latter case, the jobs defined in the other work-
flow will be executed. The ability to reuse other workflows in
a job is not commonly exploited by the repositories in our
dataset: only 823 jobs (0.8%) from 254 distinct repositories
(0.9%) refer to another workflow. Analysing the origin of the
reused workflows, we found that the large majority (84.4%)
have the same owner as the calling job. More specifically, 279
jobs (33.9%) use a workflow within the same repository and
416 jobs (50.5%) use a workflow located in another repository
of the same owner. Only 128 jobs (15.5%) use a workflow
located in another public repository.

Similar to Section V, we analysed the names of the jobs
to gain insight into their purpose. However, only 40.7% of
the jobs define the optional job name field. For those that do
not, we considered their identifier instead (i.e., the key used to
define the job). We found 32,265 distinct names, of which 851
are used by 10 or more jobs. The most frequent names (> 1%)
were build (15.5%), test (4.2%), analyse (2.2%), lint (2%),
release (1.7%), and deploy (1.5%). The first most frequent
name for a social activity was stale (0.9%), corresponding
to the task of closing issues or pull requests that have not
exhibited any recent activity.

The large majority of workflows define a single job, but
most repositories have two or more jobs defined in the to-
tality of their workflows. Jobs mostly implement technical
activities. It is not common practice to reuse workflows in
jobs.

VII. WHAT ARE THE AUTOMATION PRACTICES?

Steps represent the smallest unit of work in a workflow.
They correspond to individual tasks in a job that are sequen-
tially executed to achieve the job goal. For example, in order
to publish a new release on a package registry such as PyPI,
a job will define steps to (1) checkout the code, (2) setup
Python, (3) install dependencies, (4) execute tests, (5) build
the package, and (6) upload it on PyPI. We found 567,352
steps for 108,500 jobs. On average, there are 5.2 steps per job
(median is 5), 8.2 steps per workflow (median is 5), and 19.4
steps per repository (median is 10).

A step either explicitly lists the commands to be executed
(through the run: key) or delegates this task (through the
uses: key) to an action or a Docker image. Table IV reports
on the proportion of steps and repositories in function of their
step type. For steps relying on the uses: key, we distinguish
between steps referring to an action by means of a local path,
a reference to a Docker image, or by specifying the name
of a repository containing the action. For the latter category,
we distinguish between references to the same repository, to a
repository of the same owner, or to another public repository.

TABLE IV
PROPORTION OF STEPS AND REPOSITORIES W.R.T. STEP TYPE AND

ACTION TARGET.

step type action target % steps % repositories
run: 49.9% 93.5%
uses: local path 0.8% 2.0%

Docker image 0.1% 1.8%
same repository 0.2% 0.4%
same owner 0.7% 4.3%
other repository 48.3% 99.3%

Around half of the steps (51.1%) use an action. Nearly
all repositories have at least one step referring to an action.
We observe that these steps mostly refer to another public
repository (48.3% of the steps and 99.3% of the repositories)
and, to a much lower extent, to a repository belonging to the
same owner (0.7% of the steps and 4.3% of the repositories).
There is little to no use of Docker images (0.1% of the steps).

The other half of the steps (49.9%) run their own local
commands. Analysing the content of run: keys, we found
139,501 distinct commands among the 287,868 steps that
define one. There are 134 commands being duplicated in 100+
steps, of which 10 are duplicated in more than 1,000 steps
(e.g., npm ci, yarn build, npm test). On average,
steps execute 2.9 command lines (median is 1) for a total
of 29.8 command lines per repository (median is 4).

Looking at the step names, we found 92,853 distinct names
of which 360 are used by at least 100 steps. The most
frequent (> 1%) names are install dependencies (3.7%),
checkout (2.9%), build (2%), run tests (1.4%), test (1.3%),
checkout repository (1.2%), and checkout code (1.1%). When
we distinguish names based on the type of the steps using
them, we find that the use of some step names is strongly
related to the presence of commands (i.e., runs:) or to the
reuse of an existing action (i.e., uses:). For example, we
found that install dependencies, build, and tests (including
their variants) are mostly used for steps executing commands
(≥ 97% of the steps with these names) while checkout (and
its variants) and setup python|node|php|etc. are mostly used
for steps relying on a reusable action (≥ 99%).

Overall, considering the names being used in at least 100
steps, we found that 47.2% of them are specialized (i.e.,
≥ 75% steps having that name) towards steps executing
commands, and 45.3% towards steps using an action. The re-
maining 7.5% names are used indiscriminately for commands
and actions, and include terms like deploy, release, and publish
among others.



A job defines five steps on average. Half of the steps are
running their own local commands while the other half use
a reusable action. Nearly all repositories rely on actions,
mostly originating from other public repositories. A large
majority of the most frequent tasks are implemented either
almost exclusively by steps executing commands or almost
exclusively by an action.

VIII. WHICH ACTIONS ARE REUSED AND HOW?
Section VII revealed the common practice of steps using

reusable actions. From the 278,122 steps relying on a reusable
action from a public repository, we found 2,964 distinct actions
of which 724 are used at least 10 times. Table V lists the 10
most frequent actions observed in steps and repositories.

TABLE V
THE 10 MOST FREQUENT ACTIONS IN STEPS AND REPOSITORIES.

action % steps % repositories
actions/checkout 35.5% 97.8%
actions/cache 7.2% 21.6%
actions/setup-node 6.6% 26.3%
actions/upload-artifact 5.9% 18.7%
actions/setup-python 5.8% 21.0%
actions/setup-java 2.6% 10.0%
actions/setup-go 2.5% 9.1%
actions/download-artifact 2.1% 6.4%
shivammathur/setup-php 1.3% 5.7%
codecov/codecov-action 1.3% 9.4%

The most frequently used action is actions/checkout, used
by 35.5% of the steps and 97.8% of the repositories. The high
proportion of repositories using it should not be surprising
since actions/checkout aims to ease checking out a reposi-
tory, a necessary first step for executing most of the CI/CD
tasks. Other frequently used actions are mainly related to the
deployment of a specific programming language environment
(e.g., setup-node or setup-python). Overall, 24.2% of the
steps use an action of the form setup-*.

For each action in the dataset, we identified its provider (i.e.,
the name of the user or organization owning the repository).
Considering the top 10 of Table V, we observe that 8 of
the most frequent actions are officially proposed by GitHub
(distributed by the actions provider) and used by 71.2% of
the steps. The first third-party provider is shivammathur with
the setup-php action.

In the entire dataset we found 2,037 different providers, but
the majority of the actions used by steps come from just a
few providers. There are only 8 providers whose actions are
called by 1,000+ steps, and 103 providers whose actions are
called by 100+ steps. The actions provider alone distributes
24 actions that account for 71.7% (i.e., 199,549) of the steps
calling an action. The second most frequent called provider
is docker (7 actions and 3.8% steps), followed by github (9
actions and 3.1% steps) mostly for their CodeQL actions, and
by shivammathur (2 actions and 1.4% steps) for its setup-
php action.

We sought to find out more about the purpose of these
actions. However, the metadata that are required to distribute

an action on a public repository do not include anything
about the action’s purpose or category.5 The only place where
this information is (partially) available is on the GitHub
Marketplace.6 To publish an action on the Marketplace, one
has to provide additional metadata, including the primary and
secondary categories the action belongs to. Even if GitHub
allows anyone to upload to the Marketplace an action available
from a public repository, so as to increase its visibility and
reuse, not all actions are published on the Marketplace. We
managed to find 917 of the 2,964 actions of our dataset on
the Marketplace, based on the assumption that the name of
the repository where the action is developed corresponds to
its unique identifier on the Marketplace. We will discuss the
threats related to this assumption in Section XI. Out of these
917 actions we found, 752 were correctly mapped, in the sense
that the repository mentioned on the Marketplace for an action
does indeed correspond to the repository that is called by the
step. These 752 actions are used in 158,441 steps (i.e., 57%
of the steps relying on a public action).

Table VI reports on the most frequent (> 1%) categories
for these actions, as well as on the proportion of steps and
repositories using them. Since we did not observe major
differences between primary and secondary categories, we
report exclusively on the former.

TABLE VI
MOST FREQUENT (> 1%) PRIMARY CATEGORIES AND THE PROPORTION

OF ACTIONS, STEPS AND REPOSITORIES USING THEM.

action category % actions % steps % repo.
Utilities 23.9% 88.2% 99.4%
Continuous integration 17.3% 4.9% 12.9%
Publishing 7.2% 0.7% 2.9%
Deployment 6.9% 0.2% 0.6%
Code quality 6.1% 0.3% 1.0%
Project management 5.2% 0.4% 1.6%
Dependency management 4.4% 1.0% 2.5%
Code review 4.1% 0.1% 0.6%
Testing 3.3% 0.7% 1.5%
Open Source management 3.3% 0.1% 0.5%
Container CI 2.3% 2.2% 5.5%
Chat 1.9% 0.3% 0.5%
Reporting 1.7% 0.1% 0.4%
Community 1.6% 0.0% 0.1%
Security 1.6% 0.1% 0.3%
unspecified 4.9% 0.2% 0.6%

Table VI reveals that most categories correspond to technical
aspects of software development. The primary categories con-
taining the highest proportion of actions (as well as steps and
repositories) are Utilities (23.9% of actions) and Continuous
integration (13.3% of actions). These two “catch-all” cate-
gories include very diverse actions to check out repositories,
set up environments, create releases, etc. The third most widely
used category is Container CI even if only 2.3% of the actions
are part of this category. It includes actions to log in to a
Docker registry, to run a Dockerfile, or to set up specific
services (e.g., a MySQL database or a Redis instance). A

5https://docs.github.com/en/actions/creating-actions/
metadata-syntax-for-github-actions

6https://github.com/marketplace?type=actions
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few categories include socially related actions, such as Project
management and Code review. These two categories notably
propose actions to create or triage issues, to detect and lock
stale issues, or to add specific comments in existing issues or
pull requests. Other social categories include Chat, Reporting
and Community. The two former ones propose actions to notify
on Slack, Discord, IRC, etc. while the latter includes actions
to ensure CLA adherence or to welcome newcomers.

Using actions in steps is a common practice. A few
actions concentrate most of the reuse, and most of them
are distributed by GitHub and belong to the Utilities or
Continuous integration categories.

IX. WHICH VERSIONING PRACTICES ARE BEING USED?

When a step uses a predefined action, in addition to
specifying the name of the repository hosting the action it
can optionally specify which version of the action should be
executed, by means of a git reference. This reference can
be a commit SHA (e.g., @753c60e0), a branch name (e.g.,
@main), or a git tag (e.g., @v2.1.3). If no reference is
specified, the latest version of the action is executed. For
security and stability reasons, GitHub recommends pinning
an action to a full-length commit SHA. While this is the
most secure option, specifying a tag is more convenient since
GitHub’s release management support advocates the creation
of a tag corresponding to the version number of a new release.
This makes it easy for a step using an action to specify which
version of the action should be executed.

Table VII shows the number and proportion of steps in func-
tion of the git reference type used for actions, and the origin of
these actions. We distinguish between no git reference (none),
a reference to a specific commit SHA, a reference to a version
tag and a reference to a branch or another tag (branch/tag).

TABLE VII
NUMBER AND PROPORTION OF STEPS W.R.T. ACTION TARGET AND GIT

REFERENCE TYPE.

steps
action origin reference type # % target % all
local path none 4,397 100.0% 1.5%

branch/tag 2 0.0% 0.0%
same repository commit SHA 2 0.2% 0.0%

version tag 123 12.8% 0.0%
branch/tag 833 87.0% 0.3%

same owner none 1 0.0% 0.0%
commit SHA 123 3.0% 0.0%
version tag 2,641 63.9% 0.9%
branch/tag 1,368 33.1% 0.5%

other repository none 2 0.0% 0.0%
commit SHA 4,601 1.7% 1.6%
version tag 258,647 93.0% 89.9%
branch/tag 14,872 5.3% 5.2%

We observe major differences in the git references used to
refer to an action in function of the origin of the action. For
instance, actions on a local path are nearly exclusively referred
to without any specific reference, while the vast majority of
actions within the same repository (but referred to with the

full name of the repository) are referred to with a branch or
a tag name or, to a much lower extent, with a version tag.
The opposite can be observed for actions from repositories of
the same owner: they are mostly referred to using a version
tag and, to a lower extent, with a branch or a tag name. The
situation is even more marked for actions coming from other
public repositories: 9 out of 10 steps in this large subset use
a version tag to refer to an action.

Assuming adherence to semantic versioning, GitHub recom-
mends specifying the version tag by including only its major
component (e.g., @v2 instead of @v2.1.3) in order to receive
critical fixes and security patches while still maintaining com-
patibility. This recommendation seems to be widely followed,
since 89.9% of the version tags used to refer to an action
include only a major component (e.g., @v2), 0.9% a minor
component (e.g., @v2.1) and 9.2% a patch component (e.g.,
@v2.1.3).

Referring to a version using only its major component
has clear advantages if we assume adherence to semantic
versioning [10]. However, since versions of an action are
identified using git tags, this means that the action maintainer
must move some of these tags each time a new version of
the action is released (e.g., moving @v2 and @v2.1 from
@v2.1.3 to @v2.1.4 when version 2.1.4 is released).
Unless automated, this introduces an additional burden on the
maintainers. Forgetting to update these tags when a minor
or a patch update is released for an action implies that the
workflows that depend on it do not automatically benefit from
the bug and security fixes provided by the update.

Moreover, we found that 16.4% of the major components
used in version tags to refer to a reusable action do not target
the highest major release of the corresponding action, i.e.,
they are relying on a lower major train. As such, dependent
workflows do not benefit from the latest bug and security fixes
of the action unless these changes are backported to lower
major trains as well [11].

Around 9 out of 10 steps use a version tag when referring
to an action. Most of the version tags only specify the
major component of the targeted version, and one sixth of
them refer to a lower major train.

X. DISCUSSION

On the Popularity of GHA

The growing popularity of GHA is undeniable. The findings
from Section IV revealed that a significant proportion of repos-
itories rely on GHA, regardless of their main programming
language. These findings are confirmed by Golzadeh et al. [8]
who showed that in 18 months, GHA has become the dominant
CI/CD service on GitHub. They attributed this popularity to
a combination of factors, including the deep integration of
GHA with GitHub, the ease of use, the speed, its free tier for
open source projects, the availability of a large marketplace of
reusable actions, and the support for many different operating
systems.



We contacted five developers using GHA, who confirmed
that these aspects played a major role in their decision to adopt
GHA: “we migrated to GHA because it was directly integrated
with GitHub and had all the same support across Linux, Mac,
Windows that we were looking for”, “the integration of GHA
into GitHub itself would be the reason of its popularity”, “you
have this marketplace of GHA and you can reuse components
from there, and it’s pretty straightforward and easy”, “People
are using GHA for the simplicity, the speed, because it’s free,
because you have access to macOS and Windows runners [...]”
and “I’m just looking for something that I can set up with the
absolute least friction, and in 99 times out of 100 that’s going
to be GitHub Actions.”

Travis, the previous dominant CI/CD tool on GitHub, has
been encountering many issues in recent years, such as re-
strictions on their free plan, decreased reliability, poor Docker
support, long build times and lack of innovation [29]. This
has further contributed to the success of GHA, as shown by
Golzadeh et al. [8] who observed that most migrations between
CI services go from Travis towards GHA. This is confirmed
by developers that we have talked to: “Travis was really a
game changer 10 years ago, [but] did not really evolve [or]
bring any innovation, [...] so we moved away from Travis”
and “since Travis has been bought by a bigger company, it
pretty much became useless and we moved away from Travis
in all our projects to GHA”.

Another important milestone for GHA relates to GitHub
being acquired by Microsoft in 2018. A developer pointed out
that “because Microsoft is now the mother company of GitHub,
you see a lot of investment taking place in GitHub. The
features being added are actually coming from a lot of areas
from within Microsoft”. Another developer signals that GHA
is one of these features: “Just look at the free GitHub Actions
nowadays. That’s a lot of money they are spending for free so
everybody can build stuff.” Most developers we talked to are
positively surprised by Microsoft’s changed attitude regarding
open source, for example: “These last years, Microsoft is really
doing huge changes internally to make their reputation change
about open source. I think Microsoft is changing its point of
view on open source and I think it’s for the greater good of
open source developers.” Despite these positive signs, having a
private company owning the dominant platform for distributing
open source software remains risky since it implies a de
facto monopoly. At some point in the future, Microsoft might
change its strategy to try to make profit out of the situation:
“There are intangible benefits that Microsoft gets and we’ll
see if changes happen in the next few years to where GitHub
makes changes to be more profitable that don’t necessarily
serve the free software folks.” and “I have mixed feelings about
it, on the one hand, it really is convenient having everything
integrated at one place. On the other hand, how much do we
really want to invest all of open source in a single company?”
This may pose difficulties to many OSS projects hosted on
GitHub, as they will be facing some kind of vendor lock-in.
Although GHA supports self-hosted runners, many aspects of
GHA (including the workflow syntax or the reusable actions)

are tightly coupled to GitHub and migrating away from GHA
could take a lot of effort. Only time will tell how this situation
will affect the future of OSS development.

The GHA Ecosystem

The findings reported in Section VIII have revealed that the
ability to reuse actions in GHA has lead to a new emerging
ecosystem that is worthy of being studied in its own right.
The reuse of actions in steps is a common practice that
allows developers to easily integrate (sometimes complex)
tasks without having to code them. The ability for a CI/CD
tool to provide reusable components is not something specific
to GHA, since many competing CI/CD tools are providing
similar mechanisms. For instance, CircleCI introduced orbs
in 2018, one year before GHA7; and Jenkins has been
providing community-contributed plugins for years through
plugins.jenkins.io. However, at the time of writing, GHA offers
more than 12,000 reusable components on its Marketplace,
about 4 times as many as CircleCI orbs and more than 6 times
higher than Jenkins plugins, and there are likely thousands
more available actions in public GitHub repositories.

Given this wide availability of reusable actions, GHA should
be studied as a “software ecosystem” that bears many similari-
ties to ecosystems of reusable software libraries distributed by
package managers, e.g., npm, Cargo, RubyGems, Maven, PyPI
and the like. The parallel with such packaging ecosystems
is quite obvious: automated workflows, as software clients,
frequently express dependencies towards reusable actions that
can exist in different versions or releases. Packaging ecosys-
tems are known to suffer from a large number of issues in
the reusable artefacts they distribute, and each of these has
been an active topic of investigation. Well-known challenges
include obsolescence or outdatedness [38], [39], dependency
issues [9], [40], [41], breaking changes [10], [14], security
vulnerabilities [2], [12], and so on.

The GHA ecosystem is likely to suffer from very similar
issues, and these issues will continue to become more impor-
tant and more impactful, as the number of reusable actions
continues to grow at a rapid pace. Therefore, there is an
urgent need for further research as well as appropriate tooling
to support developers of reusable actions and workflows,
especially since these issues may not only affect the workflows
but also wide ranges of projects that use them. A first step
in this direction is GitHub’s built-in Dependabot dependency
monitoring service that has recently (January 2022) started to
support actions.

Security Concerns

While security concerns are important to deal with for any
software project, it is known that the attack surface of security
issues has become several orders of magnitude higher due to
the widespread dependence on reusable software libraries that
can have deep transitive dependency chains [2], [12], [42],
[43]. The reliance on CI/CD tools to automate development

7https://circleci.com/blog/announcing-orbs-technology-partner-program/
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activities in software projects continues to increase this attack
surface considerably. Two developers that we talked to confirm
that this constitutes a major security concern: “In house we
have two GitHub and GitLab CI systems that we need to
maintain. It’s a major security concern because, from that
automation you can basically run any code on it.” and “CI/CD
are very important to secure the build chain, that we should
focus in the future into the aspect of securing the toolchain.”

For GHA in particular, multiple examples of security issues
with potentially disastrous consequences have been reported,
such as manipulating pull requests to steal arbitrary secrets,8

injecting arbitrary code with workflow commands9 or bypass-
ing code reviews to push unreviewed code.10 A developer we
talked to specifically mentioned “You can open a pull request,
build the package, and then we will deliver it. And when you
do that from a pull request, there are issues with the security
considerations about the credentials, because anyone could
modify workflows or inject code, get access to the credentials
and then access to the upload process. [...] When it’s open
to everyone, you need to be careful. [...] What we do with
GitHub Actions, we build in one workflow, and we have a
second workflow which does the upload or the shipping or the
delivery with credentials which are not exposed in the build
pipeline for the pull request.”

Relying on reusable actions from third-party repositories or
even from the Marketplace further increases the vulnerability
attack surface. Since a job executes its commands within
a runner shared with other jobs from the same workflow,
individual jobs in a workflow can compromise other jobs they
interact with. For example, a job could query the environment
variables used by a later job, write files to a shared directory
that a later job processes, or even more directly interact with
the Docker socket and inspect other running containers and
execute commands in them.11

Despite these risks, Section VIII revealed that it is common
practice to rely on reusable actions. As a general rule of thumb,
GitHub recommends to only use actions whose creator can be
trusted. However, even actions from trusted creators can be
compromised. For example, an attacker having gained write
access to the repository of a trusted action can change its
code and commands in order to compromise the repositories
depending on this action.

To further reduce the risks of using compromised actions,
GitHub suggests referring to reusable actions through their
unique commit SHA, to avoid unintentionally using a com-
prised action that may have its code changed and may be
able to steal secrets: “Pinning to a particular SHA helps
mitigate the risk of a bad actor adding a backdoor to the
action’s repository, as they would need to generate a SHA-1

8https://blog.teddykatz.com/2021/03/17/github-actions-write-access.html
9https://packetstormsecurity.com/files/159794/

GitHub-Widespread-Injection.html
10https://medium.com/cider-sec/bypassing-required-reviews-6e1b29135cc7
11https://docs.github.com/en/actions/security-guides/

security-hardening-for-github-actions#using-third-party-actions

collision for a valid Git object payload.”12 Unfortunately, we
observed in Section IX that this recommendation is not really
followed in practice. The very large majority of steps relying
on a reusable action use a version tag (rather than a commit
SHA) when referring to an action, and most of the version
tags only specify the major component of the targeted version,
implying that any new compromised version of an action will
be automatically adopted by most dependent workflows.

We are not aware of any publicly available quantitative
analysis having reported on the impact of reusable actions on
security vulnerabilities in software projects. Such empirical
research is urgently needed, in order to quantify the extent of
the problem. That would constitute a first step towards trying
to reduce the attack surface of vulnerabilities related to the
use of GHA.

XI. THREATS TO VALIDITY

We follow the structure recommended by Wohlin et al. [44]
to discuss the main threats to validity of our research.

Threats to construct validity concern the relation between
the theory behind the experiment and the observed findings.
They can be mainly due to imprecisions in the measurements
we performed. We detected the use of automated workflows in
GitHub repositories on the basis of the presence of a YAML
file in the .github/workflows folder. This approach leads
to an overestimation since the presence of a YAML file
does not necessarily imply that the corresponding workflow is
actually being triggered and used. However, we are confident
that such workflows are indeed used in the vast majority of
cases as there is little to no practical reason to keep workflows
in .github/workflows without using them.

Another threat to construct validity stems from how we
identified the git reference type used to reference public
actions in steps. We relied on a heuristic to detect whether
the git references correspond to a version number (via a
regular expression), to a commit SHA (based on the git
reference length) or to a tag or branch name (all remaining
git references). This naive heuristic seemed to be effective
since we did not find any false positives after having manually
checked 104 distinct randomly selected cases.

Another threat to validity stems from how we interpreted
the identifier labels for workflows and jobs. We relied on these
labels in Sections V and VI to understand the purpose of the
workflows and jobs being defined. While some workflows and
jobs may have a label that does not reflect their purpose, we
believe these cases to be rare, as the goal of a label is to
provide an indication of the nature of the workflow or job,
and not to mislead practitioners or researchers.

Threats to internal validity concern choices and factors
internal to the study that could influence the observations
we made. One of such choices relates to how we mapped
actions used in steps with the ones distributed on the GitHub
Marketplace. We relied on the assumption that the name of

12https://docs.github.com/en/actions/security-guides/
security-hardening-for-github-actions
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the repository where an action is developed corresponds to
its unique identifier on the Marketplace. This led both to
false positives (e.g., action myci-actions/checkout is iden-
tified as checkout while checkout on the Marketplace is
provided by actions/checkout) and false negatives (e.g.,
action actions/setup-node is identified as setup-node-js-
environment on the Marketplace). False positives were ad-
dressed by comparing the repository referred from the calling
step with the repository listed on the action page on the Mar-
ketplace. We were unable to address the false negatives, as this
would require extracting all actions from the Marketplace in
order to obtain their development repositories. Unfortunately,
GitHub does not provide a complete list of actions in the
Marketplace, nor an API to obtain them. We remain confident
that the findings of Section VIII are representative, since we
managed to map correctly 727 actions, accounting for 57% of
the steps relying on an action.

Threats to conclusion validity concern the degree to which
the conclusions derived from our analysis are reasonable.
Since our conclusions are mostly based on quantitative ob-
servations, they are unlikely to be affected by such threats.

Threats to external validity concern whether the results can
be generalized outside the scope of this study. One such threat
was our decision to study active repositories having at least
100 stars and 100 commits, aiming at excluding abandoned,
personal or experimental repositories that do not necessarily
correspond to software development [32]. This implies that
we have no insight into the use of GHA in smaller or less
active repositories, and it could be the case that GHA is used
for different purposes in those repositories (e.g., to publish
GitHub pages or to compile LATEX files).

XII. CONCLUSION

GHA has become the dominant CI/CD on GitHub, only
18 months after its introduction. In order to get a deeper
insight into the GHA ecosystem, we have conducted a quanti-
tative study of 29,778 GitHub repositories containing 70,278
GHA workflows. We characterised these repositories and their
workflows, in terms of which jobs, steps and reusable actions
were used and how. We observed that workflows tend to be
used in the more active GitHub projects (more contributors,
pull requests, commits and issues). These workflows and their
jobs are primarily used for development purposes, and mostly
triggered by push or pull request events. About half of all
steps in jobs rely on reusable actions, mostly originating
from public repositories. Most of the actions being reused
are provided by GitHub itself, and their primary purpose is
for continuous integration and other utilities. Actions appear
to be reused by adhering to some sort of semantic versioning.
The reuse of actions can be problematic, as it has the potential
of increasing the attack surface of security issues by several
orders of magnitude.

This article is the first to have provided a large-scale quan-
titative assessment of GitHub repository workflows relying on
GitHub Actions. We have quantified the widespread use of

GHA workflows and reusable actions in GitHub repositories.
Nevertheless, we only scratched the surface of the emerging
GHA ecosystem. More in-depth empirical studies remain
required to provide a comprehensive understanding of the
GHA ecosystem. Such studies should focus on assessing, in
the context of the GHA ecosystem, the prevalence and impact
of the well-known challenges and issues encountered by more
traditional software ecosystems. Indeed, in this new context,
those issues may not only affect the GHA workflows but also
a wide range of projects using them. Additional work is also
required to study the security concerns related to the reuse of
actions, as well as how this ecosystem is evolving over time,
and how it compares to similar and related CI/CD ecosystems
(such as the ecosystem of orbs on CircleCI, of plugins on
Jenkins, or the Infrastructure as Code ecosystem of roles in
RedHat Ansible [45]).

As future work, we plan to conduct a complementary
qualitative analysis by interviewing experienced practitioners
to identify and understand the main motivations for adopting
and using GHA and the perceived benefits and drawbacks of
doing so. Such qualitative insights aim to complement the
quantitative results of this paper in order to further increase
the understanding of the emerging GHA ecosystem and its
implications on collaborative OSS development in GitHub.

Specifically related to the research question of which actions
are reused and how, we plan to study the versioning practices
followed by actions and by the workflows relying on them,
considering how frequently actions and workflows are updated,
and to which extent workflows stay up-to-date with respect to
the actions they are using.
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