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Abstract

This chapter presents the research advancements in the field of data-intensive software
system evolution, 5 years after the publication of our IEEE Computer column presenting the
challenges in this field [1]. We present the state-of-the-art in this research domain, and re-
port on research on the evolution of open source Java projects relying on relational database
technologies. We empirically analyse how the use of Java database technologies evolves over
time. We report on a coarse-grained source-code analysis carried out over several thousands of
Java projects, and complement this by a fine-grained longitudinal analysis of the co-evolution
between database schema changes and source code changes within three large Java projects.
The presented results are a first step towards a recommendation system supporting developers
in writing database-centered code.

1 Introduction
Our August 2010 IEEE Computer column [1] reported on four important challenges that developers
of evolving data-intensive software systems are confronted with. By data-intensive we understand
any software system (i.e., a collection of programs implementing the business logic) that strongly
interacts with a database (containing the business data, e.g., customers, invoices, shipments, that
form an accurate image of the business). While the software system is implemented in one or more
programming languages (e.g., Java), the business data is managed by a (often relational) database
management system (DBMS). The database is structured according to a schema that faithfully
models the business structure and its rules.

It is widely known that any software system is subject to frequent changes [2]. These changes
can have many causes, including requirements changes, technological changes (e.g., new technol-
ogy or new languages), and structural changes that aim to improve quality (in either the programs
or the data). While both the software and database engineering research communities have ad-
dressed such evolution problems separately, the challenge is how to cope with the co-evolution of
the software system and its data system.
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The link between the software part and the data part of a data intensive system is ensured
through some API, library or framework that takes care of connecting the program code to the
database. In the simplest case, the code will contain embedded database queries (e.g., SQL state-
ments) that will be dynamically built by the application programs and then interpreted by the
DBMS. In more complex cases, especially for object-oriented programming languages such as
Java, object-relational mappings (ORM) will be provided to translate the concepts used by the
program (e.g., classes, methods and attributes) into concepts used by the database (e.g., tables,
columns and values).

While an ORM mainly serves to tackle the so-called object-relational impedance mismatch [3],
this comes at a certain cost. For instance, ORM middleware provides programmers an external,
object-oriented view on the physical, relational database schema. Both schemas can evolve asyn-
chronously, each at their own pace, often under the responsibility of independent teams. Severe
inconsistencies between system components may then progressively emerge due to undisciplined
evolution processes. In addition, the high level of dynamicity of current database access tech-
nologies makes it hard for a programmer to figure out which SQL queries will be executed at a
given location of the program source code, or which source code methods actually access a given
database table or column. Things may become even worse when multiple database access tech-
nologies co-exist within the same software system. In such a context, co-evolving the database and
the program requires to master several different languages, frameworks and APIs.

This chapter reports on the research progress we have recently achieved in this domain, and
situate it in the light of the achievements of other researchers. Our research has been focused on
Java projects, because Java is one of the most popular object-oriented programming languages
today, and because it offers a wide variety of frameworks and APIs for providing an ORM or other
means of communicating with a DBMS. To better understand how the use of such technologies
within software projects evolves over time, we carried out empirical studies at different levels
of granularity. At a coarse-grained level, we analysed and compared the evolution of database
technologies used in the source code of thousands of Java projects. At a fine-grained level, we
studied the co-evolution between database schema changes and source code changes, focusing on
a limited number of Java systems and database technologies.

This chapter is structured as follows. Section 2 presents the state of the art in research on the
evolution of data-intensive software systems, and puts our own research into perspective. Section 3
provides an overview of the empirical approach that we have been following to study the co-
evolution of Java-based software systems interacting with relational database systems. Section 4
presents some of the findings based on a coarse-grained empirical analysis of several thousands
of systems. Section 5 explores three such systems at a fine-grained level of detail, studying the
co-evolution between their software and database parts, taking into account the ORM that relates
them. Section 6 concludes, and Section 7 presents some open avenues of further research.

2 State of the art
While the literature on database schema evolution is very large [4], few authors have proposed
approaches to systematically observe how developers cope with database evolution in practice.
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Sjoberg [5] presented a study where the schema evolution history of a large-scale medical appli-
cation is measured and interpreted. Curino et al. [6] focused on the structural evolution of the
Wikipedia database, with the aim to extract both a micro- and a macro-classification of schema
changes. Vassiliadis et al. [7] studied the evolution of individual database tables over time in eight
different software systems. They also tried to determine whether Lehman’s laws of software evo-
lution hold for evolving database schemas as well [8]. They conclude that the essence of Lehman’s
laws remains valid in this context, but that specific mechanics significantly differ when it comes to
schema evolution.

Several researchers have tried to identify, extract and analyse database usage in application
programs. The purpose of the proposed approaches ranges from error checking [9, 10, 11], over
SQL fault localization [12], to fault diagnosis [13]. More recently, Linares-Vasquez et al. [14]
studied how developers document database usage in source code. Their results show that a large
proportion of database-accessing methods is completely undocumented.

Several researchers have also studied the problem of database schema evolution in combina-
tion with source code evolution. Maule et al. [15] studied a commercial object-oriented content
management system to statically analyze the impact of relational database schema changes on the
source code. Chen et al. [16] proposed a static code analysis framework for detecting and fixing
performance issues and potential bugs in ORM usage. Their analysis revealed that the modifi-
cations made after analysis caused an important improvement of the studied systems’ response
time. Qiu et al. [17] empirically analyzed the co-evolution of relational database schemas and
code in ten open-source database applications from various domains. They studied specific change
types inside the database schema and the impact of such changes on PHP code. Karahasanoić [18]
studied how the maintenance of application consistency can be supported by identifying and visu-
alizing the impacts of changes in evolving object-oriented systems, including changes originating
from a database schema. However, he focused on object-oriented databases rather than relational
databases. Lin et al. [19] study the so-called collateral evolution of applications and databases,
in which the evolution of an application is separated from the evolution of its persistent data,
or from the database. They investigated how application programs and database management sys-
tems in popular open source systems (Mozilla, Monotone) cope with database schema changes and
database format changes. They observed that collateral evolution can lead to potential problems.

From a less technical point of view, Riaz et al. [20] conducted a survey with software pro-
fessionals in order to determine the main characteristics that predict maintainability of relational
database-driven software applications. It would be interesting to see to which extent these sub-
jective opinions obtained from professionals, correspond to the actual maintainability problems
that can be observed by analysing the evolution history of the source code and database schemas
directly.

Our own research
Our own research focuses on the empirical analysis of the co-evolution of object-oriented code and
relational database schemas, restricted mainly to open source Java systems and ORM technologies,
and studying both the technical and social aspects.
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In [21], we empirically analyzed the evolution of the usage of SQL, Hibernate and JPA in a
large and complex open source information system, called OSCAR, that has been implemented
in Java. We observed a migration to ORM and persistence technologies offered by Hibernate
and JPA, but the practice of using embedded SQL code still remains prevalent today. Contrary
to our intuition, we did not find a specialization of developers towards specific database-related
activities: the majority of developers appeared to be active in both database-unrelated and database-
related activities, and this during the entire considered time period. As a parallel research track we
validated on the OSCAR system a tool-supported method for analyzing the evolution history of
legacy databases [22]. We extracted the logical schema for each system version from the SQL files
collected from the versioning system. Then we incrementally built a historical schema which we
finally visualized and analyzed further. This analysis focused on the database and did not consider
the application code. In [23] we studied both the database schema and the application code in
order to identify referential integrity constraints. We demonstrated our approach on the Oscar
system by searching foreign key candidates. We analyzed the database schema, the embedded
SQL statements in the Java code, and the JPA object model. In [24] we presented a tool-supported
technique allowing to locate the source code origin of a given SQL query in hybrid data-intensive
systems that rely on JDBC, Hibernate and/or JPA to access their database.

Complementing the research of [21], in [25] we carried out a coarse-grained historical analy-
sis of the usage of Java relational database technologies (primarily JDBC, Hibernate, Spring, JPA
and Vaadin) on several thousands of open source Java projects extracted from a GitHub corpus
consisting of over 13K active projects [26]. Using the statistical technique of survival analysis,
we explored the survival of the database technologies in the considered projects. In particular,
we analysed whether certain technologies co-occur frequently, and whether some technologies get
replaced over time by others. We observed that some combinations of database technologies ap-
peared to complement and reinforce one another. We did not observe any evidence of technologies
disappearing at the expense of others.

With respect to tool support, we developed DAHLIA, a tool to visually analyze the database
schema evolution [27]. DAHLIA provides support for both 2D and 3D visualization. The 2D mode
proposes an interactive panel to investigate the database objects (e.g. tables, columns, foreign keys
and indexes) of the historical schema and query their respective history. The 3D mode makes use
of the city metaphor of CodeCity [28].

3 Analysing the use of ORM technologies in database-driven
Java systems

For the current chapter, we limited ourselves to mine historical information from large open source
Java systems. The choice for Java is because it is the most popular programming language today
according to different sources such as the TIOBE Programming Community index (August 2015).
In addition to this, a large number of technologies and frameworks have been provided to facilitate
database access from within Java code.

The choice for open source systems is motivated by the accessibility of source code. The source
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code development history for the chosen systems was extracted from the project repositories avail-
able through the Git distributed version control system. This enables us to analyze the evolution
over time of the project activity and the database usage by the considered systems.

A large-scale empirical analysis, carried out in [25], revealed that a wide range of frameworks
and APIs are used by open source Java projects to facilitate relational database access. These
technologies operate on different levels of abstraction. For example, as illustrated by Figure 1,
a developer can simply choose to embed character strings that represent SQL statements in the
source code. The SQL queries are sent to the database through a connector like JDBC, which
provides a low-level abstraction of SQL-based database access.

Figure 1: Schematic overview of the interaction between source code and a relational database.

Interaction with the database can also be realized using an ORM library. These libraries offer
a higher level of abstraction based on a mapping between Java classes and database tables.

The mapping can take many different forms, as illustrated in Figure 2. The first example shows
the use of Hibernate configuration files (i.e., .hbm.xml). The second example illustrates the
use of Java annotations based on JPA, the standard API in Java for ORM and data persistence
management. Such a mapping may allow direct operations on objects, attributes and relationships
instead of tables and columns. This is commonly referred as the active record pattern.

Some ORM libraries also provide SQL-inspired languages that allow to write SQL-like queries
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using the mappings defined before. The third example in Figure 2 illustrates the Hibernate Query
Language (HQL), and the fourth example uses the Java Persistence Query Language (JPQL), a
platform-independent object-oriented query language which is defined as part of the JPA specifi-
cation.

The mapping can take many different forms, as illustrated in Figure 2. The first example shows
the use of Hibernate configuration files (i.e., .hbm.xml). The second example illustrates the
use of Java annotations based on JPA, the standard API in Java for ORM and data persistence
management. Such a mapping may allow direct operations on objects, attributes and relationships
instead of tables and columns. This is commonly referred as the active record pattern.

Some ORM libraries also provide SQL-inspired languages that allow to write SQL-like queries
using the mappings defined before. The third example in Figure 2 illustrates the Hibernate Query
Language (HQL), and the fourth example uses the Java Persistence Query Language (JPQL), a
platform-independent object-oriented query language which is defined as part of the JPA specifi-
cation.

Example of using Hibernate configuration files:

1 < h i b e r n a t e �mapping>
2 < c l a s s name=" Customer " t a b l e =" AppCustomers ">
3 < i d name=" i d " t y p e =" i n t " column=" i d " / >
4 < p r o p e r t y name=" name " column=" name " t y p e =" S t r i n g " / >
5 < / c l a s s >
6 < / h i b e r n a t e �mapping>

Example of using JPA annotations:

1 @Enti ty
2 @Table ( name=" AppCustomers " )
3 p u b l i c c l a s s Customer {
4 @Id
5 p r i v a t e i n t i d ;
6 S t r i n g name ;
7 [ . . . ]
8 }

Example of using Hibernate Query Language (HQL):

1 p u b l i c L i s t <Customer > f i n d A l l C u s t o m e r s ( ) {
2 S t r i n g h q l = " s e l e c t c from Customer c " ;
3 re turn e x e c u t e Q u e r y ( h q l ) ;
4 }
5 p u b l i c L i s t e x e c u t e Q u e r y ( S t r i n g h q l ) {
6 re turn s e s s i o n . c r e a t e Q u e r y ( h q l ) . l i s t ( ) ;
7 }
8 p u b l i c Customer f i n d C u s t o m e r ( I n t e g e r i d ) {
9 re turn ( Customer ) s e s s i o n . g e t ( Customer . c l a s s , i d ) ;

10 }

Example of direct object manipulation using ActiveJDBC:

1 L i s t <Customer > c u s t o m e r s = Customer . where ( " name = ’ John Doe ’ " ) ;
2 Customer j ohn = c u s t o m e r s . g e t ( 0 ) ;
3 j o hn . setName ( " John Smith " ) ;
4 j o hn . s a v e I t ( ) ;

Figure 2: Four examples of Java ORM usage.
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There are also popular web application frameworks with database access APIs among their
features. For instance, the Spring framework provides interfaces to make it easier to use JPA or to
access a database through JDBC. It offers solutions for resource management, data access object
(DAO) implementations or transaction handling. Typically, it supports the integration with popular
ORM frameworks such as Hibernate.

Co-Evolution
The plethora of different database access technologies available for Java systems, combined with
the omnipresence of relational SQL-based database technologies, inspired us to study the problem
of co-evolution from two different points of view.

From a coarse-grained, general point of view, we want to understand if and how different
database access technologies for Java are used together and how this evolves over time. Do some
technologies reenforce one another? Do newer technologies tend to replace older ones? Since
the use of database access technologies may differ significantly from one Java system to another,
an answer to such questions requires a large-scale longitudinal study over several hundreds or
thousands of Java projects in order to come to conclusive, statistically relevant results. This is
what we will present in Section 4.

From a fine-grained, system-specific point of view, we also want to determine how database
tables and columns evolve over time, and how given database tables and columns are accessed by
the programs source code, through which technologies, in which classes and methods, and through
which queries. Addressing such questions is highly useful in the context of data-intensive systems
maintenance; in particular to achieve a graceful co-evolution of the database and the programs. The
answers to those questions being system-specific, they cannot be generalized. Therefore, Section 5
will focus on automated fine-grained analysis of three particular data-intensive systems.

4 Coarse-grained analysis of database technology usage
Despite the fact that database technologies are crucial for connecting the source code to the database,
a detailed study of their usage and their evolution is generally neglected in scientific studies. At a
coarse-grained level of abstraction, we wish to understand how existing open source Java systems
rely on relational database technologies, and how the use of such technologies evolves over time.

By doing so, we aim to provide to developers and project managers a historical overview of
database technologies usage that helps them to evaluate the risks and the advantages of using a
technology or a combination of technologies. In particular, empirical studies can help to if (and
which) database technologies are often replaced and if they can remain used in Java projects for a
long time before becoming completed with or substituted by another technology.

Selected Java projects and relational database technologies
In order to carry out such a coarse-grained empirical study, we extracted Java projects from the
Github Java Corpus proposed by Allamanis and Sutton [26]. In total, we studied 13,307 Java
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projects that still had an available Git repository on 24 March 2015. By skimming recent scien-
tific publications, Stack Exchange and blog posts, we identified 26 potential relational database
technologies for Java. As a constraint, we imposed that the chosen technologies need to have at
least a direct means of accessing a relational database. They also need to be identifiable by static
analysis. We determined the presence of each of these technologies in each of the 13,307 projects
by analyzing the import statements in Java files, as well as the presence of specific configuration
files. For the first commit of each month of each considered Java project, we retraced a historical
view of the files that can be related to a particular technology or to a particular framework.

This left us with 4,503 Java projects using at least one of the considered database technologies.
Based on this first collection of Java projects and database technologies, we narrowed down our
selection to consider only the most popular technologies. We identified four technologies that were
each used in at least 5% of all considered Java projects in our collection: JDBC (used in 15.1% of
all 4,503 projects), JPA (8.1%), Spring (5.7%), and Hibernate (5.4%). The results are summarized
in Table 1.

Of all considered Java projects in our collection, only 2,818 of them used at least one of these
four technologies at least once. In the remainder of this section, we will therefore only focus on
these four technologies and the 2,818 Java projects that use them.

Table 1: Selected Java database technologies.

Used tech-
nology

URL Occurs if the project contains at least a file #projects

JDBC www.oracle.com/technetwork/
java/javase/jdbc

importing java.sql 2,008

JPA www.tutorialspoint.com/jpa importing javax.persistence or
java.persistence, or whose filename
is meta-inf/persistence.xml

1,075

Spring projects.spring.io/
spring-framework

importing org.springframework or whose
name is spring-config.xml or beans.xml

759

Hibernate hibernate.org importing org.hibernate or whose file-
name ends with .hbm.xml

718

Table 2 presents some size and duration metrics over these 2,818 Java projects. We observe that
the distribution of metrics values is highly skewed, suggesting evidence of the Pareto principle [29].

Table 2: Characteristics of the 2,818 considered Java projects.

mean standard minimum median maximum
deviation

duration (in days) until last considered version 950.8 999.3 0 701 6,728
number of commits 1245.1 5781.6 1 123.5 174,618
number of distinct contributors 12.1 29.6 1 4 1,091
number of files in latest version 1001.2 3384.1 1 195 103,493
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Evolution of database technology usage
Since our goal is to study the evolution of database technology usage over time in Java projects,
Figure 3 visualizes the evolution over time of the occurrence of the retained technologies in the
considered projects. For each technology T∈ {JDBC,Hibernate, JPA,Spring}, the y-axis shows
the fraction

number of projects using technology T
number of projects using any of the 4 considered technologies

2004
2006

2008
2010

2012
0.0

0.2

0.4

0.6

0.8

1.0
JDBC%
Spring%
Hibernate%
JPA%

Figure 3: Evolution of the share of each technology T ∈ {JDBC,Hibernate, JPA,Spring}.

Intuitively, Figure 3 reveals the relative importance (in terms of number of projects) of one
technology over another one. (The sum of shares is sometimes greater than 1 because some projects
use multiple technologies simultaneously.)

We observe that JDBC was and remains the most frequent technology, which is not sur-
prising since it provides the basic means for connecting to a database and handling SQL queries.
Nevertheless, the share of JDBC appears to be decreasing since 2008, which coincides with the
emergence of JPA. We also observe that Hibernate and Spring obtained their maximum before 2010
and since then their shares are slowly decreasing. We hypothesize that this is due to JPA becom-
ing more popular and partially overtaking the other technologies. Indeed, of the four considered
technologies, only JPA’s share continues to grow over the entire considered timeframe.

Co-occurrence of database technologies
Considering the four selected relational database technologies, which combinations of them fre-
quently co-occur in our selection of Java projects? Such information would reveal which tech-
nologies are complementary, and which technologies are used as supporting technologies of other
ones.

Let’s consider the technologies appearing at least once in the entire lifetime of each considered
project. Figure 4 shows the number of projects in which a combination of technologies has been
detected. A first observation is that JDBC is the sole technology in 62% of all projects (1,239
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out of 2,008). A possible interpretation is that, in many cases, the services provided by JDBC
are considered as sufficient by the developers, and the advantages provided by more advanced
technologies do not justify the cost of their introduction. On the other hand, we observe that a
large proportion of projects that make use of another technology also make use of JDBC. For
instance, Hibernate is used alone in only 8% of all projects (60/718), and a majority (62%) of all
projects that make use of Hibernate also make use of JDBC (but not necessarily at the same time
in their history).

JPA
Spring JDBC

Hibernate
284

167 1239

60
86

124

133

139

16

76

61

64143

46

180

Figure 4: Number of projects for each combination of database technologies.

Something similar can be observed for JDBC and JPA. JPA occurs in isolation in 26% of all
projects, while almost half (47%) of all projects that make use of JPA also make use of JDBC.
Considering the four selected technologies, 38% of all projects used at least 2 technologies over
their observed lifetime.

These high numbers could be due to the fact that some technologies are used as supporting
or complementary technologies for others. More specifically, the low level JDBC is probably
punctually used to express complex queries that cannot be expressed –or are difficult to express–
with higher-level technologies. However, the reason why 180 of the 2,818 considered projects have
used all of the 4 technologies simultaneously remains unknown.

While Figure 4 shows that most projects use several database technologies over their life-
time, it does not provide information about their actual co-occurrences. We therefore compared,
for each project, the overall number of detected technologies through the entire lifetime and the
maximum number of simultaneously present (i.e., co-occurring) technologies. Table 3 presents
the detected co-occurrences of technologies. We observed that in more than 80% of all cases,
different database technologies tend to co-occur together in a project. This represents 887
co-occurrences for 1,068 projects with at least two technologies in their whole lifetime.

While the four technologies present comparable numbers of projects in which they co-occur,
these numbers are proportionally very different. For example, while only 37% of the occurrences
of JDBC coincide with another technology, 91% of the occurrences of Hibernate coincide
with another technology. If we zoom in closer, we observe a co-occurrence with JPA for
77% of all projects in which Hibernate occurs. This is the highest observed percentage of
co-occurrences. On the opposite side of the spectrum, we find that only 43% of all projects in
which Hibernate occurs, co-occur with Spring. This is the lowest observed percentage of co-
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Table 3: Number of projects in which a technology was used (column 2); absolute and relative
number of projects in with the technology co-occurred with one of the 3 other technologies (column
3); absolute and relative number of projects in which a specific pair of database technologies co-
occurs (columns 4-7).

Co-occurrences with. . .
Technology # projects Co-occurrences with any JDBC Spring Hibernate JPA

of the 3 other technologies
JDBC 2008 743 (37%) \ 363 (49%) 396 (53%) 454 (61%)
Spring 759 582 (77%) 363 (62%) \ 278 (48%) 358 (62%)
Hibernate 718 652 (91%) 396 (61%) 278 (43%) \ 502 (77%)
JPA 1075 771 (72%) 454 (59%) 358 (46%) 502 (65%) \

occurrences. Of all considered pairs of technologies, Spring and Hibernate are used together
the least frequently.

Introduction and disappearance of database technologies
Introducing a new database technology in a software project comes at a certain cost. A common
policy is therefore to introduce a new technology only if the expected benefits outweigh the ex-
pected cost. Examples of such benefits are more efficient services, increased modularity, a simpler
implementation or maintenance, etc.

For each project, we analyzed at what moment in the project’s lifetime each occurring database
technology got introduced or disappeared. We observed that the answer was strongly related to the
duration and size of the considered projects. To take into account the effect of project duration, we
normalized the lifetime of each project into a range of values between 0 (the start of the project)
and 1 (the last considered commit). To study the effect of project size, we split our project corpus
in two equally-sized subsets containing respectively the small and the large projects. Project size
was measured as number of files in the latest revision (see Table 2). All small projects contained
less than 195 files.

Figure 5 shows the relative moment in the project history where each of the considered tech-
nologies have been introduced (Figure 5a) or removed (Figure 5b). Projects in which the consid-
ered technology did not disappear before the last observable commit have been disregarded. For
both small and large projects, over 50% of the introductions of a technology are done very
early in the projects’ life (in the first 15% of their lifetime). This is what one would expect, since
a database (and by extension, a database access technology) is usually part of a project specification
since its beginning.

In Figure 5, the distribution of the moment of technology removal is much less skewed than
the distribution of the moment of technology introduction. We do not observe particular difference
across technologies. Overall, technologies tend to disappear faster in small than in large
projects, especially for JDBC and JPA.

As many projects use multiple technologies, either simultaneously or one after the other, it is
useful to study how the introduction of a new technology can affect the presence of a previous one.
We used the statistical technique of survival analysis to study this question. This technique creates
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Figure 5: Relative time of introduction and disappearance of database technologies. Horizontal
dashed lines represent the quartiles of the distribution.

a model estimating the survival rate of a population over time, considering the fact that some
elements of the population may leave the study, and for some other elements the event of interest
does not occur during the observation period. In our case, the observed event is the introduction of
a second technology after the introduction of a previously occurring one.

Figure 6 presents the results of the survival analysis, distinguishing the small projects (dashed
lines) from the large ones (straight lines). The survival rates of technologies in large projects
are significantly lower than for small projects, implying that new technologies are introduced
more often and more quickly in large projects than in small ones. The survival rates are also
significantly higher for JDBC than for the other technologies, both for small and large projects.
This indicates that JPA, Spring and Hibernate rarely succeed JDBC and, if they do, it happens
later and more uniformly. Among the possible explanations, JDBC may be sufficient to satisfy
the initial requirements of most projects, while new technologies are only introduced as these
requirements change and grow over time.

Figure 6 also reveals that Hibernate has a much lower survival rate than the other technolo-
gies. Both small and large projects tend to complete or to replace Hibernate more often than
any other technology. Finally, we observe that during the first 10% of the projects’ lifetime, the
survival rates of Hibernate decrease by 15% (resp. 40%) which represents a more important de-
crease than for the other technologies, which means that Hibernate is usually quickly followed
or complemented by another technology.

Discussion
We collected and analyzed data for more than 13K Java projects. Of these, 4,503 projects used
at least one out of 26 identified Java relational database technologies. Among these technologies,
JDBC, JPA, Hibernate and Spring were the most widely used, covering 2,818 of all Java projects.
We therefore analyzed the evolution and co-occurrences of those four technologies in order to get
a high-level view of their usage in Java projects. As projects often make use of these technolo-
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Figure 6: Probability that a technology remains the last introduced technology over time.

gies either simultaneously or one after the other, we deepened our analyses to identify the most
frequently co-occurring pairs of technologies, and to determine how fast a technology tends to be
replaced by or completed by another one. This coarse-grained analysis allowed us to observe some
interesting global trends concerning the four considered technologies (highlighted in boldface in
the previous subsections).

While a coarse-grained analysis may help to identify such global trends, a more fine-grained
analysis is required to target more specific research questions. How and why do developers decide
to introduce new database technologies to complement existing ones? How and where are partic-
ular technologies used in the source code? Are the same database schema elements covered by
different technologies? Do particular code files involve different technologies?

In addition to this, a fine-grained analysis may help to reveal whether the use of particular
technologies is in line with the evolution of the database schema. Are some parts of the code out-
of-date with respect to the database schema? Is it easier to detect and address these inconsistencies
with some of the technologies? Which typical workflows can we observe in the usage of those
technologies? Can we quantify and compare the impact on the code of a database change? These
are the types of questions that will be targeted in Section 5.

5 Fine-grained analysis of database technology usage

5.1 Analysis background
In our fine-grained analysis, we investigate in the source code and the database schema how some
measurable characteristics of database usage in data-intensive systems evolve over time. Our ob-
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jective is to understand, at a fine-grained level, how the systems evolve over time, how the database
and code co-evolve and how several technologies may co-exist into the same system.

We studied the evolution of three large open-source Java systems (OSCAR, OpenMRS and
Broadleaf Commerce) that have been developed for more than seven years and rely on the database
access technologies which we studied in the coarse-grained analysis of Section 4. Two of these sys-
tems are popular, Electronic Medical Record (EMR) systems and the third one is an e-commerce
framework. All three use a relational database for data persistence and deal with a large amount of
data. Hence, they are good representatives of data-intensive software systems. Table 4 presents an
overview of the main characteristics of the selected software systems.

Table 4: Main characteristics of the selected systems.

System Description KLOC Start Date

OSCAR EMR system > 2,000 11/2002
OpenMRS EMR system > 300 05/2006
Broadleaf E-commerce framework > 250 12/2008

OSCAR (oscar-emr.com) is an open-source ERM information system that is widely used
in the healthcare industry in Canada. Its primary purpose is to maintain electronic patient records
and interfaces of a variety of other information systems used in the healthcare industry. OSCAR
has been developed since 2002. The source code comprises approximately two million lines of
code. OSCAR combines different ways to access the database because of the constant and ongoing
evolution history of the product: the developers originally used JDBC, then Hibernate, and more
recently JPA. We empirically confirmed these findings in [21].

OpenMRS (openmrs.org) is a collaborative open-source project to develop software to sup-
port the delivery of healthcare in developing countries (mainly in Africa). It was conceived as a
general-purpose EMR system that could support the full range of medical treatments. It has been
developed since 2006. OpenMRS uses a MySQL database accessed via Hibernate and dynamic
SQL (JDBC).

Broadleaf (www.broadleafcommerce.org) is an open-source, e-commerce framework
written entirely in Java on top of the Spring framework. It facilitates the development of enterprise-
class, commerce-driven sites by providing a robust data model, services, and specialized tooling
that take care of most of the ‘heavy lifting’ work. Broadleaf has been developed since 2008. It
uses a relational database accessed by the source code via JPA.

For all the systems, we performed a static analysis on the source code of selected revisions
from the version control systems. Firstly, we picked the initial commits and then we went on
through the next revisions and selected those which were at least 15 days from the last selected
revision and contained at least 500 modified lines. As a result, we have a snapshot of the state
of each system in every 2-3 weeks of its development (the extraction and historization phases are
respectively detailed in [24] and [27]). As is customary for many open source projects, the number
of code files of each system grows more or less linearly over time (see Figure 7).

14

oscar-emr.com
openmrs.org
www.broadleafcommerce.org


●●
●●●●●●

●●
●●●●●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●●●

●
●●●●

●●●●

●

●●●●

●●●●●●●●
●
●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●

●●●
●●●●●●●●

●● ●●●●●●●●●●
●
●●●●●●●

●●●●●●●●
●●●●

●●●●

●●●●●●●●●●●●●●●●

●

●●
●●●

●
●

●
●●

●●
●●●

●
●●

●●●●●●●●
●
●

●

●●●●●●●●

●●●●●●●●●●

●
●●●

●●●
●●●

●
●●●●●●

●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●

●●●
●●

●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●

●●●●●
●●

●●●

●●●

●

●

●

●

●

●●●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●●●●

●

●●●

●●●

●

●●●●

●

●●

●●●●●●●●●●●●●●●

●●

●

●●●

●
●
●

●
●

●
●
●●●

●
●
●●

●●●● ●●

●
● ●●●●●●●

● ●●

●●●
●●●●

●●

●

●●●●●●●

●●●●
●
●
●
●●

●
●●

●
●

●●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●●●
●●

●●
●

●
●

●

●
●●●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●

●

1000

2000

3000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Version

F
ile

s

System
●

●

●

BroadLeaf
OpenMRS
Oscar

Number of Files

Figure 7: Evolution over time of the number of files in each system.

5.2 Conceptual Schema
We developed static analyzers to compute size metrics of the source code and the database schema.
We also identified the database access points in the source code where the database is accessed
through JDBC, Hibernate or JPA. These access points could be simple CRUD (Create, Read, Up-
date or Delete) operations, or locations where the system queries the database with native SQL,
HQL or JPQL queries.

We used the gathered information to build a generic conceptual schema of all the different
artifacts that can be analyzed historically in a given data-intensive system. This schema is pre-
sented in Figure 8. The central element is Version, which assigns a unique version identifier to
the other artifacts, in order to be able to analyze the evolution of each program component and
data component of the system over time. The green elements in the figure represent the source
code components (e.g.,File, Class, Method and Attribute (each of them has its own definition at
a particular position in the code, expressed as a couple of coordinates: a begin line and column,
and an end line and column). The red elements represent the database components (e.g.,Table and
Column). The blue elements represent the DatabaseAccess (e.g., Query and CRUDOpera-
tion). Such database accesses appear in the program code as MethodCall to particular methods (at
a particular position in the code) that are part of the API, library of framework that takes care of the
database access. Database queries (e.g., SQL queries) may be embedded in the code and provide a
direct access to some DatabaseObject. Alternatively, the database access may take place through
some ORM Mapping (shown by the grey elements in the figure).

Let us illustrate the use of our conceptual schema. Figure 2 shows a sample of Java code using
Hibernate for accessing the database in a given system version. In that piece of code, in particular

15



1-1

0-N

tableVersion

1-10-N programPath

0-N

0-N
position
beginLine
beginCol
endLine
endCol

1-1 0-Nop

1-1

0-N

mappingVersion

0-N

0-N

mapped

1-1 0-Nhas

1-1 0-Nfile

0-N

1-1 entity
0-N

0-N

columnType
minCard
maxCard
type
length
decimalNumber
defaultValue[0-1]

0-N 0-N

CodeObjectPosition
beginLine
beginCol
endLine
endCol

1-1 0-Nclass

0-N1-1 call

0-N

1-1

attribute

1-1

0-Nattr

0-N

0-N
accessed

P

P

P

P

Version
hash
date
developer
id: hash

TableMapping

Table
name
id: name

Query
query
isNativeSQL

MethodCall Method
signature
id: class.Class
signature

Mapping
hib[0-1]
jpa[0-1]
exact-1:hib

jpa

File
filePath
id: filePath

DatabaseObject

DatabaseAccess
jdbc[0-1]
hib[0-1]
jpa[0-1]
exact-1:jdbc

hib
jpa

CRUDOperation
operation

ColumnMapping

Column
name
id: has.Table
name

CodeObject

Class
classPath
isInterface
id: file.File
classPath

Attribute
name
id: name

Figure 8: Conceptual schema of the considered DISS artifacts.

in the third example, one easily detects the presence of two database accesses: line 9 retrieves the
customer corresponding to a given id, whereas line 3 executes an HQL query selecting all the cus-
tomers recorded in the system. The first access makes use of Customer, a mapped entity Class
located in File /src/pojo/Customer.java, to query the database. Customer is mapped
(Mapping) to the AppCustomers Table. Line 9 is a Hibernate DatabaseAccess and more
precisely a CRUDOperation (of type Read). The ProgramPath of the read access has a length
of 1 and is a MethodCall to findCustomer Method at line 9 (position). The second database
access is an HQL Query accessing the AppCustomers Table and has a ProgramPath of length
2: a MethodCall to findAllCustomers Method at line 3 and a second to executeQuery
Method at line 6.

5.3 Metrics
By exploiting this conceptual schema, we studied and measured some characteristics of the three
systems at different levels. For measuring those characteristics, we successively analyzed each
selected version in order to observe how the systems evolve over time. We respectively selected
242, 164 and 118 versions for OSCAR, OpenMRS and Broadleaf . We now present the different
metrics we used to measure the characteristics of each system at the code and database schema
levels as well as metrics pertaining to the co-evolution of both.

Each of the three considered systems appears to have its own specific database schema growth
trend. Figure 9 depicts, for each system, the evolution of the number of tables. While the schema
of OSCAR continuously grows over time, OpenMRS and Broadleaf seem to have a more periodic
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Figure 9: Evolution of the number of tables over time.

growth. Table 5 shows the number of database changes occurred in the life of each system. There
are fewer changes in the OpenMRS schema. Its developers rarely remove tables and columns and
have a well-prepared extension phase with the addition of 21 tables in November 2011. Except
for this period of growth, the schema size remains constant. After an initial phase of growth
(up to October 2009), the Broadleaf schema remains more or less stable until June 2012. From
there until February 2013, the schema undergoes a strong growth, followed again by a stable
phase. Nevertheless, during that stable period, we observe some schema changes with successive
additions and removals of tables. A more detailed analysis revealed that those changes correspond
to a renaming phase of some tables.

Table 5: Number of database schema changes in the systems’ life.

System #Added Tables #Added Columns #Deleted Tables #Deleted Columns
Oscar 391 12597 32 2442

OpenMRS 27 438 11 100
Broadleaf 240 1425 86 584

In order to study the co-evolution between the source code and the database schema, we focused
on three artifacts of our conceptual schema: (1) the tables that are accessed and the way to access
them (Figure 10); (2) the locations of code and files accessing the database (respectively Figure 11
and Figure 12); and (3) the distribution of mappings across ORM technologies (Figure 13).
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OSCAR
(1) Initially, OSCAR only used the JDBC API to access the database. In August 2006, Hibernate
was introduced in the system but the number of JDBC-accessed tables did not decrease. In April
2008, JPA appears but remains infrequently used up to March 2012. While JDBC was the pre-
vailing technology (in terms of accessed tables) until there, a massive migration phase happened
and JPA became the main technology, with a decrease of Hibernate and JDBC usage. Today, the
three technologies still co-exist and we observe that many tables in the database are accessed by at
least two technologies, which may be considered a sign of bad coding practices, or a technology
migration process that is still ongoing.
(2) The database access location distribution follows a different trend. Until the introduction of
JPA, there was a majority of Hibernate access locations. Once JPA was introduced, the number
of Hibernate and JDBC access locations progressively decreased. We also analyzed the distribu-
tion of database technologies across Java files. Here again, the distribution over time confirms a
massive migration phase in March 2012 with the explosion of the number of files that access the
database via JPA and the decrease of the number of files using JDBC or Hibernate. Some files al-
low accessing the database via both JDBC and Hibernate and might indicate bad coding practices
or non-ended migration.
(3) The observed migration phase also impacts the ORM mappings defined between the Java
classes and the database tables. The majority of the Hibernate mappings has been replaced by
JPA mappings. Nevertheless, a big part of the database schema remains unmapped. A small set of
tables contain both Hibernate and JPA mappings, which is a potential problem that should probably
be fixed in the future.

OpenMRS
(1) Since the beginning, OpenMRS combined JDBC and Hibernate to query its database. However,
while a majority of tables are accessed via Hibernate, only a few tables are accessed through
JDBC. In November 2011, almost all the 21 added tables are exclusively accessed via Hibernate.
Hibernate clearly appears as the main technology but it is interesting to point out that some tables
are accessed via both JDBC and Hibernate during the whole system’s life.
(2) The access location point distribution confirms that Hibernate is the main technology. The
number of JDBC locations is much lower than the Hibernate locations and the number of Hibernate
files is the predominant part. What is more surprising is the increasing number of JDBC files in
comparison to the limited number of tables accessed via JDBC.
(3) Since we observed that Hibernate was the main technology and also the only used ORM, it is
not astounding to see that the majority of tables are mapped to Java classes.

Broadleaf
(1) Broadleaf uses JPA for accessing its database from the programs source code. The number
of non-accessed tables remains very high during the whole system’s life. Moreover we observe a
stabilization of that number from February 2013 (one can see the same trend regarding the size of
the database schema).
(2) The access location point distribution also follows the same trend with that stabilization in
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February 2013. What is more interesting is that Broadleaf looks very well designed and divided
from the start of the project with an average of one database-accessing file per table.
(3) The ORM mappings are defined on the majority of the database tables and do not evolve
anymore since the stabilization period.

5.4 Discussion
With our static analysis and the exploitation of our conceptual schema, we studied three data-
intensive systems. Through the measurement of database usage characteristics we investigated
and understood how the systems evolve over time, how the database and source code co-evolve
and how several technologies co-exist within a same system. Through our study, we analyzed the
history of each system and pointed out that each of them has a specific design and evolution.

OSCAR is a frequently changing system. Code and database schema have continuously evolved.
It seems clear that the introduction of a new technology (Hibernate and later JPA) was aimed to
replace the previous one; we can clearly identify the decrease in the usage of JDBC (resp. Hi-
bernate) after the introduction of Hibernate (resp. JPA).We noticed that those migrations are still
ongoing, as can be witnessed by the presence of tables accessed by several technologies, as well as
by the presence of several technologies in a same file. A more blatant example is the co-existence
of Hibernate and JPA mappings for some tables. Furthermore, the three technologies (JDBC, Hi-
bernate and JPA) have co-existed for several years and make code and database evolution more
complex and time-consuming. OSCAR developers even admit it: one “can use a direct connection
to the database via a class called DBHandler, use a legacy Hibernate model, or use a generic JPA
model. As new and easier database access models became available, they were integrated into
OSCAR. The result is that there is now a slightly noisy picture of how OSCAR interacts with data
in MySQL.” [30]

Compared to OSCAR, OpenMRS is a less prone to changes. Its code has increasingly evolved
over time but there were fewer changes in the database schema, which has remained quite stable
over the years. These changes seem to be periodic and better anticipated. Most of those changes
are applied at the same versions. Moreover, one can notice that database objects are rarely removed
from the schema. Another major difference with Oscar is that JDBC and Hibernate co-exist from
the beginning of the project and are complementary: no technology aims to substitute the other.

Concerning Broadleaf , with further analysis of our measurements, we found that the database
objects are rarely removed; almost all the removed tables are actually involved in a renaming
process. However, as SQL migration scripts are not provided for Broadleaf , identifying table
renamings is not an easy and direct process. Among the three systems, Broadleaf seems to be
the one with the simplest design. Indeed, Broadleaf only uses JPA to communicate with the
database. Moreover, Broadleaf looks well structured and easy to maintain. The detection of
database locations in the code requires fewer effort since the lines of code that access tables are
usually regrouped into a single file.

The question of “what is the required effort to maintain/evolve a given data-intensive software
system” remains to be studied in our future work.
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Figure 10: Distribution of the accessed tables across the technologies.
20



 Introduction of

 Hibernate

 Introduction of

 JPA

0

400

800

1200

1600

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Version

A
cc

es
se

s

Technology
JDBC & HIB & JPA
HIB & JPA
JDBC & JPA
JDBC & HIB
JPA
HIB
JDBC

Number of Database Access Points (Oscar)

0

100

200

300

400

500

2008 2009 2010 2011 2012 2013 2014 2015
Version

A
cc

es
se

s

Technology
JDBC & HIB & JPA
HIB & JPA
JDBC & JPA
JDBC & HIB
JPA
HIB
JDBC

Number of Database Access Points (OpenMRS)

0

50

100

150

2010 2011 2012 2013 2014 2015
Version

A
cc

es
se

s

Technology
JDBC & HIB & JPA
HIB & JPA
JDBC & JPA
JDBC & HIB
JPA
HIB
JDBC

Number of Database Access Points (BroadLeaf)

Figure 11: Database access point distribution.
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Figure 12: The distribution of the files accessing the database.
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6 Conclusion
Little is known about how, in a data-intensive software system, the software part of the system
(i.e., the source code) co-evolves with the data part (e.g., the relational database, represented by
a database schema). Empirical software engineering research has mainly focused on studying the
evolution of the software system, while ignoring its connected data system.

Even less is known about how this co-evolution is affected by the different database manipula-
tion technologies used to access the database from the source code. In the case of Java software,
for example, a wide variety of technologies are used (including JDBC, Hibernate, Spring and JPA).

We carried out a coarse-grained empirical study on several thousands of open source Java
software systems to gain insight in how they use database technologies, and how this evolves over
time. While low-level technologies like JDBC continue to remain widely used, higher-level ORMs
and persistence APIs like JPA are becoming increasingly more popular over time. In addition,
we observed that close to 40% of database-driven Java systems have used at least two different
technologies over their observed lifetime. For most of them, these different technologies were used
simultaneously. We also observed that new technologies are introduced faster in (and disappear
slower from) large systems than in small ones. Some technologies, like Hibernate, tend to be
replaced faster than other technologies.

We complemented the coarse-grained evolutionary analysis by a fine-grained one in which we
narrowed down on three data-intensive open source Java systems. For these systems, we jointly
analyzed the changes in the database schema and the related changes in the source code by focusing
on the database access locations. We observed, among others, that the very same tables could be
accessed by different data manipulation technologies within the programs. We also observed that
database schemas may quickly grow over time, most schema changes consisting in adding new
tables and columns. Finally, we saw that a significant subset of database tables and columns are not
accessed (any longer) by the application programs. The presence of such “dead” schema elements
might suggest that the co-evolution of schema and programs is not always a trivial process for the
developers. The developers seem to refrain to evolve a table in the database schema, since this
may make related queries invalid in the programs. Instead, they most probably prefer to add a
new table, by duplicating the data and incrementally updating the programs in order to use the new
table instead of the old one. In some cases, the old table version is never deleted even when it is not
accessed anymore by the programs. Further investigations are needed to confirm this hypothesis.

We are convinced that the work presented in this chapter can lead to actionable results. They
may serve, for instance, as a sound basis to build recommendation systems. Such systems could
suggest which developer(s) to contact and what to do if certain changes should be done in some
database schema elements or in some program code accessing the database. They could also help
development teams to estimate the effort needed to achieve given (co-)evolution tasks, taking into
account the particular technology (or technologies) being used.

24



7 Future Work
This chapter only focused on the technical aspects of how to relate the software and the data parts
of a database-driven software system, and how to study their co-evolution over time, taking into
account the particular database technologies being used. It is, however, equally important to study
the social aspects of such systems in order to address a wider range of relevant questions. Are
separate persons or teams responsible for managing the program code, the database mapping code,
the database? How do developers divide their effort across these different activities? If different
technologies are being used, are they used by separate groups of developers? How does all of
this change over time? We started to address these questions in [21], but clearly more empirical
research is required.

The research results presented here were only focused on Java systems, so similar studies for
other programming languages would be needed. Also, the focus was on relational (SQL-based)
databases, while many contemporary software systems are relying on NoSQL (i.e., typically non-
relational) database management systems.

The empirical analysis that was carried out could be refined in many ways. By using dynamic
program analysis as opposed to static programming analysis, at the expense of requiring more
data and processing power. By using external data sources such as mailing lists, bug trackers, and
Q&A websites (e.g., Stack Overflow) for measuring other aspects such as software quality (e.g., in
terms of reported/resolved issues in the bug tracker), developer collaboration (through mailing list
communication), user satisfaction (using information from bug tracker and mailing list, combined
with sentiment analysis). As a first step in this direction, the use of Stack Overflow has been
explored in [31], where it was used to identify error-prone patterns in SQL queries, which is a first
step towards a recommendation system supporting developers in writing database-centered code.
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