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Abstract

Component-based software reuse has lead to the emergence of numerous open source
software ecosystems. Such ecosystems offer the user a wide and diverse collection of
software components that are interconnected by dependency relationships and main-
tained by large communities of developers. While developers can reuse the work of
others by depending on their components, such dependencies give rise to many issues
that impact maintenance effort if not properly addressed. This chapter discusses some
commonly encountered dependency issues, and illustrates them through two case stud-
ies of popular open source package-based software ecosystems: Debian and R. For both
of them, we present the limitations of current tool support for dependency manage-
ment, and we provide results of empirical analyses that highlight how such tool support
could be improved.

1 Introduction

Software engineering research has traditionally focused on studying the development and
evolution processes of individual software projects. With the omnipresence of the Internet,
an entire range of collaborative software development tools have become available and widely
used, especially in the open source development scene. This has lead to bigger and more
geographically distributed communities of developers, and made it possible to develop more
complex software systems. It also gave rise to so-called software ecosystems, i.e., “collections
of software products that have some given degree of symbiotic relationships” [31].
Analysing software projects from such an ecosystemic perspective can reveal new insights
into why and how they evolve. Projects that are part of an ecosystem tend to be interdepen-
dent, and developers contributing to this ecosystem may be involved in multiple projects and
share implicit or explicit knowledge across these projects. Hence, the evolution of a project
may be affected to a certain degree by the changes in connected projects. This implies that
project evolution should be studied in the context of its surrounding ecosystem. This view



is shared by Lungu [28], who defined a software ecosystem as “a set of software projects that
are developed and evolve together in the same environment”.

One of the main reasons for dependencies between components in an ecosystem is soft-
ware reuse, a basic principle of software engineering [37]. Software components often rely
on (i.e., reuse) the functionality offered by other components (e.g., libraries), rather than
reimplementing the same functionality. While this tends to reduce the effort from the point
of view of a single component, it increases the overall complexity of the ecosystem, through
the need to manage these dependencies. This complexity can become the cause of many
maintainability issues and failures in component-based software ecosystems [9]. For this
reason it is important to study dependency-related issues and to provide tools that would
allow ecosystem maintainers to deal with these issues.

This chapter therefore discusses different types of maintenance issues related to component-
based software ecosystems and how these issues impact maintainers and users of the ecosys-
tem. We illustrate how these issues have been studied on two well-known package-based
software ecosystems, Debian and R, both containing thousands of packages.

We show how analyzing these issues from the ecosystem point of view may help the
ecosystem’s maintainers to detect these issues better. This will allow them to decide more
easily if and when the observed issues become problematic, and to take decisions to fix the
issue or prevent it from reappearing in the future.

2 Problem overview

This section presents different types of issues related to inter-component dependencies that
can happen during the development and evolution of components of a software ecosystem.
We provide a common vocabulary of the inter-component dependency relationships we are
interested in, discuss the possible problems caused by such interdependencies, and provide
a summary of the state-of-the-art of proposed solutions.

2.1 Terminology

Several researchers have proposed general models to study intercomponent dependencies [15,
20, 29]. Based on these models, this chapter uses the following vocabulary to describe the
different types of intercomponent relationships that are relevant.

Components act as the basic software unit that can be added, removed or upgraded
in the software system. They provide the right level of granularity at which a user can
manipulate available software. Components are typically organized in coherent collections
called distributions, repositories or archives. The set of components of a distribution
that are actually used by a particular user is called her component status. To modify
the component status, for example by upgrading existing components or installing new
ones, the user typically relies on a tool that is called the component manager. This
manager uses component metadata in order to derive the context in which components
may or may not be used. Exemples of such metadata are component dependencies and



conflicts. Component dependencies represent positive requirements (a component needs
to be present for the proper functioning of another component), while component conflicts
represent negative requirements (e.g., certain components or component versions cannot
be used in combination). One of the most generic ways to express dependencies (though
not supported by every component manager) is by means of a conjunction of disjunctions,
allowing a choice of which component can satisfy a dependency.

Figure 1 provides a concrete example of how component dependencies and conflicts can
be specified for packages in the Debian and R ecosystems, respectively. The Debian package
xul-ext-adblock-plus depends on one of the three packages iceweasel, icedove or iceape. This is
expressed by a disjunction (vertical bar | ) of packages. The package conflicts with mozilla-
firefox-adblock. The R package SciViews depends on version 2.6 of the R language as well as
on packages stats, grDevices, graphics and MASS. The notion of conflicts and the ability to
express disjunctions of dependencies are not explicitly supported by R package metadata.

Package: xul-ext-adblock-plus

Description: Advertisement blocking extension
for web browsers

Source: adblock-plus

Version: 2.1-1+deb7ul

Replaces: adblock-plus (<< 1.1.1-2) Package: SciViews
Provides: adblock-plus, iceape-adblock-plus, Title: SciViews GUI API - Main package
icedove-adblock-plus, iceweasel-adblock-plus || Imports: ellipse
Depends: iceweasel (>= 8.0) | icedove (>= 8.0) Depends: R (>= 2.6.0), stats,
| iceape (>= 2.5) grDevices, graphics, MASS
Enhances: iceape, icedove, iceweasel Enhances: base
Conflicts: mozilla-firefox-adblock Version: 0.9-5

Figure 1: Two concrete examples of component metadata. Left: the Debian package xul-ext-
adblock-plus. Right: the R package SciViews.

Some ecosystems allow components to depend on, or conflict with, an abstract compo-
nent. In that case, the dependency (or conflict) is satisfied (or violated) by any component
that provides features of that abstract component. For example, in Figure 1 the Debian
package xul-ext-adblock-pls provides the features of the following abstract packages: adblock-
plus, iceape-adblock-plus, icedove-adblock-plus, iceweasel-adblock-plus. Any dependency on
adblock-plus would be satisfied if xul-ext-adblock-plus, or any other package providing adblock-
plus, was installed.

Dependencies and conflicts can be restricted to specific versions of the target component.
This is usually represented by a constraint on the version number. For example, in Figure 1
Debian package xul-ext-adblock-plus requires version 8.0 or higher of iceweasel. R package
metadata does not support depending on specific package versions.

Figure 2 shows an example of a graph showing the aforementioned relationships. Com-
ponents are visualised by ellipses and abstract components by diamonds. Edges represent
component dependencies and dashed lines represent component conflicts. Constraints on the
component version are depicted by edge labels. For example, abstract component v depends



Figure 2: Example of a component dependency graph.

on two components ¢ and d that are in mutual conflict. Component d is also in conflict with
version 2.1 or superior of component f. Component e depends on a version lower than 3.0 of
component f.

2.2 Identifying and retrieving dependency information

A particular type of software ecosystems where dependencies play a central role are package-
based ecosystems. Such ecosystems generally consist of collections of software projects bun-
dled in packages that need to rely on other packages in order to function correctly. Well
known examples of such package-based ecosystems are Debian and R, both containing thou-
sands of packages. LaBelle et al. [27] showed that the package dependency graphs for the
open source Debian and FreeBSD distributions form a complex network with small-world
and scale-free properties.

Extensive research has been conducted on the Debian package-based ecosystem [2, 3, 6,
14, 15, 17, 18, 40, 42] and the R package-based ecosystem [12, 22]. Other software ecosys-
tems make use of components comparable to packages such as plug-ins (e.g., the Eclipse
software development environment [43]), modules (e.g., the NetBeans software development
environment), libraries [19], extensions and add-ons (e.g. the Firefox web browser), mobile
app stores [7, 32].

In package-based ecosystems, each package is generally required to provide metadata
specifying package dependencies. Two examples of this were given in Figure 1. Some-
times, however, the metadata can be incomplete or inconsistent, or even entirely lacking.
In particular, constraints on dependency versions are often missing or inaccurate, because
the component metadata is not always updated if the source code of components is being
modified. In those cases, it may still be possible to retrieve the information using automated
configuration tools such as make, cmake, autoconf, ant and maven.
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Another way to retrieve the necessary metadata is through static code analysis. The
source code of a software project usually contains the necessary information about which
library or module is imported and which part of it is being used. A static analyser can use
this information to obtain all dependencies across components at the ecosystem level. This
solution does have its limits though, since there is no guarantee that dependencies discovered
in the source code will actually be used at runtime. For this, dynamic code analysis would
be required. This is particularly so for dynamically typed languages where it is much harder
to derive the call dependencies statically.

In order to facilitate retrieval of component dependencies, Lungu et al. [29] proposed Ecco,
a framework to generically represent dependencies between software projects. It models an
ecosystem as a set of projects containing entities which are classes or methods. Entities can
be of type provided, called or required. Lungu et al. [29] used Ecco to compare different
strategies to extract dependencies statically from dynamically typed Smalltalk source code.
While some methods are more efficient than others, none is able to successfully recover the
list of all existing dependencies.

As explained by Abate et al. [3], a direct dependency graph obtained by identifying the list
of components required by each component of the ecosystem, is not enough to characterize
package interactions because those other components may have dependencies themselves.
Because of this, they introduced the notion of strong dependencies of a component, which
are the components that are always required, directly or indirectly, in order to successfully use
the component depending on them. On top of this they introduced a measure of component
sensitivity in order to determine, by means of the strong dependency graph, how much a
change to a component may impact the ecosystem. In the context of Debian for example,
they noticed that the most extreme cases of sensitive packages would go unnoticed when
relying solely on direct dependencies. A sensitivity metric based on strong dependencies can
be used by maintainers to decide which component should be or should not be upgraded or
removed.

2.3 Satisfying dependencies and conflicts

Satisfying dependency constraints Once the dependencies of each component of an
ecosystem have been identified, one needs to verify if they can be satisfied. The presence of
dependency constraints can make some dependencies unsatisfiable. Being unable to satisfy
dependencies will prevent a user from using a component, which would be highly undesir-
able. Based on the strong dependency graph, tools like distcheck have been developed to
detect those components that cannot satisfy their dependencies. Such tools have been used
successfully in different ecosystems such as Debian, OPAM and Drupal and have been shown
to be useful to developers [1].

Satisfying component co-installability Conflicts may prevent a component to be used
in a given context. If a component is in conflict with one of its strong dependencies, it will be
unusable. When a conflict is declared (directly or indirectly) between two components, all



components that strongly depend on both of them will not be able to work either. In a system
where only one version of a component can be used at the same time, when two components
need to depend (directly or indirectly) on two different versions of the same component,
they will be unusable together. This problem is known for package-based ecosystems (and
more particularly Debian) as the problem of co-installability [6, 17, 18, 40]. It can be
generalized as the ability for two components to be used together.

We refer to strong conflicts as all components that are known to be always incom-
patible together. Just like the strong dependency graph can be used to satisfy dependency
constraints, a strong conflict graph can be used to detect co-installability problems between
components. Such a graph enables to identify the most problematic components of an
ecosystem.

It is important to stress that components may be in strong conflict “by design”: they
cannot be installed together because they were never meant to work together. If this is the
case, developers and users can be made aware of this impossibility by documenting such
“known” conflicts explicitly in the component metadata. An example of this is shown in
Figure 1, where package xul-ext-adblock-plus is declared to be in direct conflict with mozilla-
firefox-adblock.

In addition to such known conflicts, new and unexpected indirect strong conflicts may
arise during component evolution without the maintainers being aware of them. These
conflicts require specific tool support to cope with them, as will be explained in Section 3.

2.4 Component upgrade

When developing software components, errors may be inadvertently introduced when changes
occur in the software components one depends upon. When changes to a component cause
the software to fail, it puts a heavy burden on the maintainers of the component that depend
on this failing component. This is especially true in a large ecosystem where thousands
of components are interdependent, and a single failure may affect a large fraction of the
ecosystem.

This problem of component upgrades has been studied by many researchers. Nagappan et
al. [34] effectively showed that software dependency metrics can be used to predict post-
release bugs. Robbes et al. [35] studied the ripple effect of API method deprecation and
revealed that API changes can have a large impact on the system and remain undetected for
a long time after the initial change. Hora et al. [21] also studied the effects of API method
deprecation and proposed to implement rules in static analysis tools to help developers
adapt more quickly to a new API. McDonnell et al. [30] studied the evolution of APIs in the
Android ecosystem. They found that, while more popular APIs have a fast release cycle,
they tend to be less stable and require more time to get adopted. Bavota et al. [8] studied the
evolution of dependencies between Apache software projects and found that developers were
reluctant to upgrade the version of the software they depend upon. In [9] they highlighted
that dependencies have an exponential growth and must be taken care of by developers.

All these studies indicate that component upgrade is often problematic and that con-
temporary tools provide insufficient support to cope with them. One of the solutions to



detect errors during the development process is continuous integration [39]. However, while
continuous integration can help to detect changes that break the system, it does not provide
information on which components can be safely upgraded. Developers would benefit from
recommender tools specifically designed to help them making such decisions.

In the context of package-based ecosystems, Di Cosmo et al. [15] highlighted peculiarities
of package upgrades and discussed that current techniques are not sufficient to overcome
failures. They proposed solutions to this problem [2, 14] and built a tool called comigrate
to efficiently identify sets of components that can be upgraded without causing failures [42].
Similarly, Abate et al. [5] proposed a proof-of-concept package manager designed to allow
the use of difference dependency solvers as plugins in order to better cope with component
upgrade issues.

2.5 Inter-project cloning

One solution to avoid problems due to component dependencies would be to reuse code
through copy-paste rather than depending on it. Indeed, some ecosystems consisting of
distributed software for a specific platform do not allow components to depend one upon
another. For example, the component manager for Android mobile apps only allows for
apps to depend on the core Android platform, forcing app developers to include third-party
libraries inside their own package. Mojica et al. [32] showed that this gives rise to very
frequent code reuse across mobile apps.

Similarly, in ecosystems with inter-component dependencies, developers may decide to
reimplement (part of) a component they need in order to avoid depending on it. In some
cases, the effort needed to reimplement the component may be smaller than if developers
have to fix errors caused by dependency changes. Especially for open source software, the
development time can be significantly reduced by directly cloning the existing code as long
as it does not violate software licenses.

In the context of a single software projects, the presence of software clones has been
extensively studied and have shown to be beneficial or detrimental to software mainte-
nance [23, 24, 25, 36]. While there have been recent studies on inter-project cloning [26, 38],
insight on the causes and implications of inter-project software clones is still lacking. Al-
though using cloning instead of a component manager to manage dependencies may help to
avoid dependency upgrade problems from a user point of view, it forces each developer to
choose which version of all their strong dependencies to include in their own component.

Additionally we previously studied functions that were duplicated between different
CRAN packages [13] and showed that most clones could not have been avoided by rely-
ing upon dependencies. While there is still a non negligible amount of cloned functions that
could be removed, further work is required to understand why these functions have been
cloned.



3 First case study: Debian

This section presents some of the inter-component dependency issues raised in the previous
section, for the concrete case of the Debian package-based ecosystem.

3.1 Overview of Debian

Debian is an open source package distribution of the GNU/Linux operating system. Debian
aims at providing an operating system that is as stable as possible, and uses a software
package management system with a strict policy to achieve these goals (see www.debian.
org/doc/debian-policy). Having existed for more than two decades, Debian is one of the
oldest Linux distributions that is still maintained today. It contains several tens of thousands
of packages, and its community spans over a thousand distinct developers! The development
process of Debian is organised around three main package distributions: stable, testing and
unstable.

stable corresponds to the latest official production distribution, and only contains stable,
well-tested packages. Table 1 summarises the characteristics of the different releases of the
stable distributions.

Version | Name | Freeze date | Release date | # packages
3.1 sarge N/A | 2005-06-06 | about 15K
4.0 etch N/A | 2007-04-08 | about 18K
5.0 lenny | 2008-07-27 2009-02-15 | about 23K
6.0 squeeze | 2010-08-06 2011-02-06 | about 28K
7.0 wheezy | 2012-06-30 2013-03-04 | about 36K
8.0 jessie | 2014-11-05 2015-04-26 | about 43K

Table 1: stable releases of Debian since 2005.

testing contains package versions that should be considered for inclusion in the next stable
Debian release. A stable release is made by freezing the testing release for a few months to
fix bugs and to remove packages containing too many bugs.

unstable is a rolling release distribution containing packages that are not thoroughly tested
and that may still suffer from stability and security problems. These releases contain the
most recent packages but also the most unstable ones.

A major problem when analysing strong package conflicts is the sheer size of the package
dependency graph: there are literally thousands of different packages with implicit or ex-
plicit dependencies to many other packages. Vouillon et al. [41] addressed this problem by
proposing an algorithm and theoretical framework to compress such a dependency graph to a
much smaller co-installability kernel with a simpler structure but equivalent co-installability
properties. Packages are bundled together into an equivalence class if they do not have a
strong conflict with one another, while the collection of other packages with which they have
strong conflicts is the same.
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As an example, the Debian i386 testing distribution on 1 January 2014 contained >38K
packages, >181K dependencies, 1,490 declared conflicts and >49K strong conflicts. The
co-installability kernel for the same data resulted in 994 equivalence classes and 4,336 in-
compatibilities between these equivalence classes. The coinst tool (coinst.irill.org) was
developed specifically for extracting and visualizing such coinstallability kernels.

Based on this tool and related research advances on strong dependency and strong conflict
analysis [2, 3, 6, 14, 15, 17, 18, 40], other tools have been created to determine appropriate
solutions to package co-installation problems. For example, comigrate (coinst.irill.org/
comigrate), coinst-upgrade, distcheck, and the dose tools for Debian Quality Assurance (qa.
debian.org/dose/). These tools are actively being used by the Debian community. These
solutions, however, do not take into account the evolution over time of strong conflicts.

In [10], we used coinst to study the evolution of strong conflicts on a period of 10 years
for the Debian i386 testing and stable distributions. We aimed to determine to which extent
this historical data provides additional information to understand and predict how strong
conflicts evolve over time, and to improve support for addressing package co-installation
problems.
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Figure 3: Ratio of strong conflicting packages in snapshots of Debian’s testing distribution
(dotted blue line) and stable distribution (solid blue line). The vertical lines correspond to
the freeze date (dashed lines) and release date (straight lines) of each major stable release.

Figure 3 shows the evolution over time of the ratio of strong conflicting packages in a
snapshot over all packages in that snapshot. We observe that starting from 2007 and with
only a few exceptions, the ratio of the testing distribution remains between 15% and 25%.
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We also observe a slight decrease over time, despite the fact that the number of packages
increases with each new major release. This shows that the Debian community actively
strives to keep strong conflicts at a minimum. The stable distribution follows a comparable
evolutionary behaviour, combined with the presence of “plateaus” corresponding to different
public releasess of Debian. Finally, the testing distribution reveals quite a number of “trend
breaks”, i.e., sudden increases in the number or ratio of strong conflicts that appear suddenly
and disappear after some time.

3.2 Aggregate Analysis of Strong Conflicts

Some of the conflicts are present in the distribution “by design”, but others may be harmful.
Distinguishing the good from the bad ones is a complex task that has traditionally required a
lot of manual investigation, with many issues going unnoticed for quite an extensive amount
of time. A natural approach to identify potentially problematic packages is to look for trend
breaks in the evolution of the absolute or relative number of strong conflicting packages in the
distribution. Sudden increases hint that some problematic package(s) may have appeared,
and sudden decreases indicate that some problematic package(s) have been fixed. Many such
discontinuities are clearly visible in Figure 3, with peaks ranging from a few hundreds to
over 4,000 strong conflicts.

Using the coinst-upgrade tool [40] that identifies the root causes for the changes in con-
flicts between two repositories, we retrieved all trend breaks that added at least 500 strong
conflicts. We manually inspected each trend break, and checked it against the information
available from the Debian project, to determine the nature of the problematic packages and
the degree of seriousness of the problem, and paired the events where each problematic
package was first introduced and then removed.

We observed that a few trend breaks were day flies that were fixed the day after their
introduction, while several took a few weeks, three took hundreds of days to fix, two have
been fixed in several phases, and two still remain unfixed today. Most of these issues would
have been captured by the comigrate [42] tool if it would have been available at that time,
and one issue could have been anticipated using the challenged [4] tool.

Interestingly, a few relevant trend breaks are not identifiable by any of the existing tools,
while an inspection of the aggregate analysis (as presented here) would have drawn attention
to them. This illustrates that there is a clear opportunity for improving current automated
tool support.

3.3 Package-level Analysis of Strong Conflicts

Once a trend break has been spotted, one still needs to identify manually what are the pack-
ages in the snapshot that are the root causes of the trend break. Some of these problematic
packages are shown in boldface in Table 2.

This process can be automated by studying the characteristics of each package related
to strong conflicts by resorting to three simple metrics:
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e the minimum number of strong conflicts
e the maximum number of strong conflicts

e the number of conflicting days over mean, i.e., the number of days the package has

more strong conflicts than max‘mum;m’mm“m

These metrics allow one to focus on packages with a significant amount of strong conflicts,
while at the same time ignoring those packages that have such a large number of conflicts
only for a short period of time. The latter case usually corresponds to transient problems,
like the day flies that we were able to identify in the previous aggregate analysis.

Potentially problematic | minimum | maximum | conflicting days
package conflicts | conflicts over mean
libgdk-pixbuf2.0-0 0 675 1349
libgdk-pixbuf2.0-dev 0 3320 915
liboss4-salsa-asound? 2963 3252 891
liboss-salsa-asound? 1741 2664 862
klogd 3 502 709
sysklogd 3 719 639
ppmtofb 0 719 639
selinux-policy-default 0 719 633
aide 0 719 633
libpam-umask 0 720 546

Table 2: Top 10 of potentially problematic packages identified by three simple metrics.
Packages shown in boldface were manually identified as root causes of trend breaks during
the aggregate analysis.

After ordering the packages with respect to the above three metrics, we obtain a list of
potentially problematic packages, of which the top 10 are presented in Table 2. Interestingly,
most of the packages that we manually identified as root causes during the aggregate analysis
(shown in boldface) are also revealed by the metrics, with the important advantage that the
metrics-based approach can be automated and requires much less manual inspection.

4 Second Case Study: The R Ecosystem

4.1 Overview of R

There are many popular languages, tools and environments for statistical computing. On
the commercial side, among the most popular ones are SAS, SPSS, SPSS, Statistica, Stata
and Excel. On the open source side, the R language and its accompanying software environ-
ment for statistical computing (www.r-project.org) is undeniable a very strong competitor,
regardless of how popularity is being measured [33].
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R forms a true software ecosystem, through its package management system that offers
an easy way to install third-party code and datasets alongside tests, documentation and
examples. The main R distribution installs a few base packages and recommended packages.
The exact number of installed packages depends on the chosen version of R. (For R 3.2.2
there are 16 base packages and 15 recommended packages.) In addition to these main R
packages, thousands of additional packages are developed and distributed through different
repositories.

Precompiled binary distributions of the R environment can be downloaded from the Com-
prehensive R Archive Network (CRAN, see cran.r-project.org). CRAN constitutes the
official R repository, containing the broadest collection of R packages. It aims at providing
stable packages compatible with the latest version of R. Quality is ensured by forcing package
maintainers to follow a rather strict policy. All CRAN packages are tested daily using the
command-line tool R CMD check which automatically checks all packages for common prob-
lems. The check is composed of over 50 individual checks carried out on different operating
systems. It includes tests for the package structure, the metadata, the documentation, the
data, the code, etc. For packages that fail the check, their maintainer is asked to resolve
the problems before the next major R release. If this is not done, problematic packages
are archived, making it impossible to install them automatically, as they will no longer be
included in CRAN until a new version is released that resolves the problems. However, it
remains possible to install such archived packages manually.

Every R package needs to specify in its DESCRIPTION file the packages it depends upon
(see Figure 1 for an example). We consider as dependencies the packages that are listed in
the Depends and Imports fields of the DESCRIPTION file, as these are the ones that are
required to install and load a package.

We have conducted multiple studies on the R ecosystem, focused on problems related to
inter-component dependencies mentioned in Section 2 [11, 12, 13, 16]. We summarize our
main findings in the following subsections. First, we present the main repositories containing
R packages and the difficulties encountered when trying to manage dependencies across these
different repositories. Next, focusing on the CRAN repository, we show how a part of package
maintenance effort needs to be dedicated to fixing errors caused by dependency upgrades.
Finally, we study the presence of identical cross-package clones in CRAN packages and
investigate their reason of existence.

4.2 R Package Repositories

Besides CRAN, R packages can also be stored on, and downloaded from, other repositories
such as Bioconductor (bioconductor.org), R-Forge (r-forge.r-project.org), and sev-
eral smaller repositories such as Omegahat and RForge. Many R packages can also be found
on “general-purpose” web-based version control repositories such as GitHub, a web platform
for Git version control repositories. Table 3 provides a brief comparison of the four of the
biggest R package repositories. It also provides an indication of the size of each repository,
expressed in terms of the number of provided R packages.
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Table 3: Characteristics of considered R package repositories

’ Repository \ Since \ # packages | Date | \ Role \ Package versions ‘
CRAN 1997 | 6411 [19-03-2015] Distribution Stable releases
BioConductor | 2001 | 997 [19-03-2015] Distribution only Stable releases
R-Forge 2006 | 1883 [18-03-2015] Mainly development | SVN version control
GitHub 2008 | 5150 [17-02-2015] Mainly development | Git version control

Bioconductor focuses on software packages and datasets dedicated to bioinformatics.
Bioconductor packages are not installed by default: users must configure their R installation
with a Bioconductor mirror. As in CRAN, packages that fail the daily check will be dropped
from the next release of Bioconductor. R-Forge is a software development forge specialized
at hosting R code. Its main target is to provide a central platform for the development
of R packages, offering SVN repositories, daily built and checked packages, bug tracking,
and so on. GitHub is becoming increasingly popular for R package development. Both R-
Forge and GitHub differ from CRAN and Bioconductor because they do not only distribute
R packages, they also facilitate the development of R packages thanks to their integrated
version control system.

Support for multiple repositories is built deeply into R. For example, the R function
install.packages can take the source repository as an optional argument, or can be used to
install older versions of a given package. While this works well for repositories such as
CRAN and Bioconductor, it does not for development forges such as GitHub due to the lack
of central index of all packages.

One of the easiest ways to install packages hosted on forges is by using the devtools
package. It provides various functions to download and install a package from different
sources. For example, the function install_github allows the installation of R packages directly
from GitHub, while the function install_svn allows the installation from an SVN repository
(such as the one used by R-Forge). By default, the latest package version will be installed, but
optional parameters can be used to install a specific version. As such, there is theoretically
no longer a strict need to rely on package distributions. Therefore, development forges must
be considered an important and integral part of the R package ecosystem.

Figure 4 shows the overlap of R packages on different distributions and development
forges. Between Bioconductor and the other package repositories, the overlap
is very limited. A negligible amount of Bioconductor packages is present on CRAN or
R-Forge, which can be explained by the highly specialised nature of Bioconductor (focused
on bioinformatics) compared to the other package repositories.

Around 18% of the CRAN packages are hosted on GitHub, while 22.5% of all R packages
on GitHub are also present on CRAN. This overlap can be explained by the fact that both
repositories serve different purposes (distribution and development, respectively). Many R
packages are developed on GitHub, while stable releases of these packages are
published on CRAN.

We observe that R-Forge has 12.3% of its packages in common with GitHub, while as

13



. cran
github cran github

441
3878 1000 0
3789 1157 5250

158

843
203 13 114

790 1101

bioconductor r-forge
github

bioconductor

4680
108 774

619
266

1925

r-forge

Figure 4: Number of R packages belonging to GitHub, CRAN, Bioconductor and R-Forge
(counted during the first trimester of 2015).

much as 45.2% of its packages are in common with CRAN . This shows that R-Forge serves
as a development platform for some of the packages that get distributed through
CRAN.

While the usage of devtools and similar tools potentially provides a way to use forges
as a rolling release distribution, there are limitations to such a solution. First, there might
be no central listing of packages available on these forges. For R-Forge the problem could
easily be solved as it contains relatively few SVN repositories. GitHub, however, contains
millions of Git repositories filled with content from various programming languages. Even
if we limit GitHub repositories to those tagged with the R language, the vast majority
does not contain an R package. The lack of a central listing of packages prevents devtools
to automatically install dependencies. An additional problem is that the same package
can be hosted in multiple repositories, making the problem of dependency resolution even
more difficult. To summarise, R package users and developers would benefit from a
package installation manager that relies on a central listing of available packages
on different repositories. It is definitely feasible to achieve such a tool, since popular
package managers for other languages such as JavaScript (e.g., bower and npm) and Python
(e.g., pip) also offer a central listing of packages, facilitating their distribution through several
repositories including GitHub.
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4.3 Inter-repository Dependencies

How can we quantify the dependency resolution problem in the R package ecosystem by
analysing the extent of inter-repository package dependencies? We previously observed that
an R package may belong to different repositories (for example, GitHub may store the devel-
opment version while CRAN may contain the stable release version of the package). Figure 5

summarises the inter-repository package dependencies. An arrow A % B means that x%
of the packages in repository A have a primary dependency belonging to repository B. This
primary dependency is computed by privileging the distributed version of a package over its
development version. For example, if package p; on GitHub depends on package p, belong-
ing to both CRAN and GitHub, it will be counted as a primary dependency from GitHub to
CRAN.

Bioconductor

Figure 5: Percentage of packages per repository that depend on at least one package from
another repository. The font size of the repository name is proportional to the number of
packages it hosts.

We observed that CRAN is self-contained: only 61% of CRAN packages have de-
pendencies, and all those dependencies are satisfied by CRAN because this is imposed by
CRAN’s daily R CMD check. Bioconductor depends primarily on itself and on
CRAN: 58.8% of all Bioconductor packages depend on CRAN packages, while 77.1% of all
Bioconductor packages depend on other Bioconductor packages. The situation for GitHub
and R-Forge is very different : 48.9% of GitHub packages and 37.2% of R-Forge packages de-
pend on a package from CRAN. This represents 87.1% (resp. 86.4%) of all the dependencies
in GitHub (resp. R-Forge). Interestingly, the number of GitHub and R-Forge R packages
having an intra-repository dependency is very low (less than 6%).

These observations strongly suggests that CRAN is at the center of the ecosystem
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and that it is nearly impossible to install packages from GitHub, Bioconductor or R-Forge
without relying on CRAN for the package dependencies. Because of CRAN’s central posi-
tion, its longevity and its important size in terms of packages, one might choose to distribute
a new package only on CRAN, and to depend only on CRAN packages. However, we
observed that more and more packages are developed and distributed on GitHub. We be-
lieve that inter-repository dependencies will become a major concern for the R
community, that could be addressed by a multi-repository package dependency
manager.

4.4 Intra-repository dependencies

Because CRAN is self-contained, it does not suffer from inter-repository dependency prob-
lems. This does not mean, however, that CRAN does not suffer from package dependency
upgrades. Inter-repository package dependency upgrades are the cause of many errors, and
therefore put a heavy burden on package maintainers. Despite the presence of continuous
integration processes at the repository level (for example, the R CMD check tool in CRAN
or Bioconductor), a lot of maintenance effort remains required to deal with such errors.

release-linux

— release—windows

50 WMW“WWWM“

O L
[ [
2014-01 2014-07 2015-01 2015-07

Time

# packages with ERROR status

Figure 6: Evolution of the number of CRAN packages with ERROR status for two different
flavors of the R CMD check.

For CRAN packages, the R CMD check is run on every package for different flavors
of R. Each flavor corresponds to a combination of the operating system, compiler and R
version being used. While the check results can vary a lot depending on the chosen flavor,
we concentrate our next analyses on the flavor based on stable releases of R for Debian.
This choice of flavor avoids the noise introduced by portability issues or changes occurring
in R itself. This flavor is among the best supported ones, it also contains the most CRAN
packages and it exhibits a less error-prone environment (see Figure 6).
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On every day from 2013-09-03 to 2015-09-03, we took a snapshot of the results of the
R CMD check (see cran.r-project.org/web/checks/). The snapshots associate to each
CRAN package its reported status, which is either OK, NOTE, WARNING or ERROR.
There were 4,930 available packages on CRAN at the beginning of this period, and 7,235 at
the end of this period. During the whole period, 19,517 pairs package-version were available
for a total of 7,820 different packages. We were only interested in the ERROR status because
it can provoke package archival. Each time we found an ERROR, we identified the reason
of this change among the following ones: because the package itself gets upgraded (PU);
because of a strong dependency upgrade (DU); or due to other external factors (EF). In
total we identified 1,320 occurrences of a status change to ERROR, and 1,288 occurrences
of a status change from ERROR back to some other status. The results are summarized in
Table 4.

status changes number | package strong dependency | external factor
update (PU) | upgrade (DU) (EF)

from ...to ERROR 1,310 | 30 (2.3%) 541 (41.3%) 739 (56.4%)

from ERROR to ... | 1,288 | 346 (26.85%) | 293 (22.75%) 649 (50.4%)

Table 4: Identified reasons for status changes to and from ERROR.

We observe that most ERRORs are introduced (56.4%) and fixed (50.4%) without a
version update from the package (PU) or an upgrade of one of its dependencies (DU).
Looking at the ERRORs that were caused by a package update to a new version, we see
that, while very few packages (2.3%) failed when a new version of the package itself was
released, more ERRORs were removed by the update of a package version (26.85%) than by
the upgrade of a strong dependency (22.75%).

Out of the 1,288 ERRORs that were removed, 26 were introduced before we started
extracting data. Only for the remaining 1,262 ERRORs we could identify both the cause of
their introduction and disappearance. We observed that most (45.7%) of the 514 ERRORs
that were introduced by a DU were removed by another DU, while 32.7% disappeared
because of a PU. We also observed that among the 334 ERRORs fixed by a PU, 50.3%
were introduced by a DU and 44.9% by an EF. This is, more than half of the errors
fixed by the package maintainers were introduced by changes in their package
dependencies.

From the above, we can conclude that breaking changes in packages force depen-
dent packages to be updated. This can require an important maintenance effort. A way
to reduce this effort would be to allow package maintainers to specify the required versions of
their dependencies. This is currently not possible because the CRAN policy imposes package
maintainers to support the latest available version of each dependency. The R community
would benefit from allowing packages to depend on different versions of other
packages. It would give them the time needed to perform appropriate dependency up-
grades without impacting the wvalidity of other packages, and without impacting end users.
The community could also benefit from specific tools that predict in advance what could
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become broken if a specific dependency were to be upgraded in incompatible ways.

5 Conclusion

This chapter presented different issues that are commonly encountered in evolving software
ecosystems involving a large number of software components and interdependencies. We
provided a common vocabulary inspired by the state-of-the-art in this research domain. We
discussed how each issue impacts component developers and presented solutions have been
proposed in the research literature. We illustrated these issues in practice, through two case
studies carried out on two very popular open source package-based software ecosystems.

For the Debian package ecosystem we showed that, despite the existence of multiple
tools to solve many of the issues related to component dependencies, an historical analysis
of strong conflicts allowed us to discover problems that could not be identified by current
tools.

For the R package ecosystem we presented the main repositories where R packages are
developed and distributed and showed that, despite the rising popularity of GitHub, CRAN
remains the most important package repository. Focusing on CRAN, we found that an
important number of package erros are caused by dependency upgrades and developers need
to fix the error by releasing a new version of their package. The R community would therefore
benefit from more advanced tools that recommend package maintainers and users how to
overcome problems related to package upgrades.

To conclude, while previous research has lead to the creation of efficient tools to cope
with dependency issues in component-based software ecosystems, there is still room for
improvement. By historically analysing the component dependency graph, more precise
information can be obtained and used to detect the root causes of dependency issues, and
to provide better automated tool support for dependency management.
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