
On the Accuracy of Bot Detection Techniques
Mehdi Golzadeh∗, Alexandre Decan∗, Natarajan Chidambaram∗

∗Software Engineering Lab,s University of Mons, Belgium
Email: {mehdi.golzadeh,alexandre.decan,natarajan.chidambaram}@umons.ac.be

Abstract—Development bots are often used to automate a
wide variety of repetitive tasks in collaborative software devel-
opment. Such bots are commonly among the most active project
contributors in terms of commit activity. As such, tools that
analyse contributor activity (e.g., for recognizing and giving credit
to project members for their contributions) need to take into
account the bots and exclude their activity. While there are a few
techniques to detect bots in software repositories, these techniques
are not perfect and may miss some bots or may wrongly identify
some human accounts as bots. In this paper, we present an
exploratory study on the accuracy of bot detection techniques
on a set of 540 accounts from 27 GitHub projects. We show
that none of the bot detection techniques are accurate enough to
detect bots among the 20 most active contributors of each project.
We show that combining these techniques drastically increases
the accuracy and recall of bot detection. We also highlight the
importance of considering bots when attributing contributions
to humans, since bots are prevalent among the top contributors
and responsible for large proportions of commits.

Index Terms—social coding platforms, bot detection tech-
niques, contributor attribution, empirical analysis, GitHub, soft-
ware repository mining

I. INTRODUCTION

The collaborative nature of open-source software develop-
ment has led to an increasing rate of creation and use of
teamwork development tools [1]. Developers use a number
of tools to reduce their workload and increase productivity
such as versioning software like Git, social coding platforms
such as GitHub and GitLab, DevOps tools, and services like
continuous integration and deployment (CI/CD) tools and
development bots. Development bots (hereafter referred to as
bots) are “automated tools that attempt to free developers from
particularly tedious tasks, or support their work in a more
general sense” [2]. They perform a wide range of tasks includ-
ing refactoring, generating bug patches, dependency updating,
license checking, and welcoming new contributors [3]–[5].
The behavior of bots may differ depending on the environment
they operate in, on the properties of the bot itself and on the
interactions of the bot within its environment [2], [6]. While
bots are primarily used to increase productivity and improve
software quality [7], the presence of bots may have unintended
negative consequences. For example, bots may introduce ad-
ditional communication overhead and can be perceived as
distracting and annoying to project contributors [8].

The increasing presence and activity of bots in software
repositories makes it challenging for software engineering
researchers to study socio-technical aspects of software de-
velopment since their findings may be biased by not explicitly
considering the presence of bots among the contributors [9].

Similarly, it may be important for contributors that their
contributions are properly recognized and rewarded since col-
laborative software development activities are often considered
as a criterion for employers when hiring developers [10].
This is especially important when funding or donations are
awarded to contributors based on their contributions. While
there are tools such as SourceCred1 to support communities
in automatically measuring and rewarding value creation, they
do not automatically identify bots and their activities so far.

This is where bot identification tools come to the rescue.
Such tools aim to distinguish bots from humans in GitHub
accounts on the basis of their behaviour. Dey et al. [11]
proposed an automatic method to identify bot accounts in
git projects based on (i) the presence of the string “bot”
at the end of the author name, (ii) commit messages, and
(iii) features related to files changed in commits and projects
the commits are associated with. Golzadeh et al. [9] proposed
an approach and tool to detect bots in GitHub repositories
based on the repetitiveness of their comments in issues and
pull requests. The approach had been further extended to git
commit messages [12].

This paper presents an exploratory study on the accuracy
of 5 bot detection techniques on a set of 540 accounts from
27 GitHub projects. We show how prevalent bots and their
activities are, and that none of the bot detection techniques
are accurate enough to detect bots even among the most active
contributors. We also show that combining these techniques
increases the accuracy and recall of bot detection but remains
insufficient to capture all bots and their activities. This high-
lights the importance of considering them when conducting
socio-technical studies or when attributing contributions, and
underlines the need for improved bot detection techniques. In
particular, we focus on the following research questions:
RQ1: How accurate are bot detection techniques?
RQ2: How prevalent are bots among the most active contrib-
utors?
RQ3: How active are bots in terms of commits?

II. METHODOLOGY

Dataset. To carry out our empirical investigation, we se-
lected projects from active software development repositories
with a large number of commits and contributors. We relied
on the SEART GitHub search tool [13] to filter a set of
repositories. We queried repositories that have at least 100
contributors and were not forked and had been active in the

1https://sourcecred.io

https://sourcecred.io


last 2 months (i.e., in October and December 2021). From
these, we randomly selected 27 large and active projects.
The selected projects have at least 1,200 commits and 200
contributors. In total, the 27 selected projects account for
175,499 commits from 9,426 contributors and cover a wide
variety of programming languages (e.g., Javascript, Python,
Java, PHP, Ruby, Rust, Go) and software domains such as
software development packages, plugins, and tools.

For each project, we queried the GitHub API to retrieve the
20 most active GitHub accounts in terms of commits, and their
respective number of commits. The resulting dataset consists
of 540 accounts. Since one of our goals is to evaluate the
accuracy of bot detection techniques, we need to determine
the correct type (i.e., bot or human) of these accounts. We
manually checked these accounts to determine their type,
looking for evidence in their profile, their commit activity and
their commenting activity. During this process, we found 50
bots out of the 540 considered accounts.

Bot detection techniques. In this paper, we evaluate the
accuracy of the following five bot detection techniques:

1) GitHub account type. This technique relies on the GitHub
API to determine whether a given GitHub account is a bot
or not. The GitHub API offers an endpoint2 to retrieve
various metadata for a given GitHub username. Among
other, these metadata includes a “type” field that is either
“Bot” or “User” depending on whether the corresponding
account had been registered as a bot or as a human
contributor.

2) “bot” suffix. This technique relies on the presence of the
string “bot” at the end of the author’s name. It has been
proposed by Dey et al. [11] as part of an ensemble model,
and has notably been used by other researchers [7].

3) BoDeGHa. Golzadeh et al. [9] proposed a classification
model to identify bots in GitHub pull request and issue
activity. Their method measures the similarity of com-
ments and groups them into patterns of similar comments.
Bots are then detected based on their lower number of
comments patterns. The model has been implemented as
part of a tool named BoDeGHa.3

4) BoDeGiC. Golzadeh et al. [12] further extended the
above approach to support git commit messages, and
implemented the resulting model as part of a tool named
BoDeGiC.4

5) List of bots. This last technique relies on a predefined list
of bots. The list contains the names of 527 known GitHub
bot accounts that were manually identified by Golzadeh
et al. [9] among 5,000 GitHub accounts.5

III. FINDINGS

RQ1: How accurate are bot detection techniques?
We applied the five bot detection techniques on our dataset

of 540 contributors. Fig. 1 shows the classifications provided

2https://docs.github.com/en/rest/reference/users
3https://github.com/mehdigolzadeh/BoDeGHa
4https://github.com/mehdigolzadeh/BoDeGiC
5https://doi.org/10.5281/zenodo.4000388

by these techniques. For readability, we only report on the
87 contributors that either correspond to actual bots, or that
were classified as bot by at least one of the techniques. Actual
bots are shown on the left side of the vertical blue line while
actual human contributors are shown on its right. An orange
cell indicates that the contributor was identified as a bot by
the corresponding technique, while a blue cell indicates that it
was identified as a human contributor. Grey cells correspond to
cases where there is not enough information for the technique
to determine the account type. In the case of BoDeGHa, this
corresponds to contributors with less than 10 comments in pull
requests or issues. In the case of BoDeGiC, this corresponds
to contributors having less than 10 commits made with a
committer name matching their GitHub account name.

From this figure, we observe that list of bots, “bot” suffix
and GitHub account type are safer techniques, in the sense
they do not wrongly classify human contributors as bots. At
the same time, they missed many actual bots: from 19 for
list of bots to 32 for GitHub account type. We also observe
that BoDeGiC effectively captures most bots, but at the same
time, wrongly considers several human contributors as bots.
BoDeGHa exhibits a similar behaviour: it is able to capture
25 out of 50 bots, but wrongly classifies much more humans
as bots than BoDeGiC (30 versus 9). We note that none of
the techniques is perfectly effective in detecting bots. Except
for a few cases, the five techniques do not even agree on
whether a given account is a bot or not. However, only 4 of the
actual bots are not detected as such by any of the techniques,
suggesting that a combination of the techniques could lead to
an improved bot detection model.

Table I reports on the precision, recall and F1-score of
the aforementioned techniques applied on the whole dataset
of 540 contributors, distinguishing these scores between bot
and human contributors. For completeness, we also report
on the overall weighted scores. Given there are far more
human contributors than bot contributors in the dataset, these
high scores (between 0.898 and 0.966) are mostly driven
by the scores obtained for human contributors. To ease the
interpretation of these scores, we also provide the scores for a
ZeroR model classifying all contributors as human contributors
(i.e., the majority class).

The observations that can be made from this table match
the ones we made from Fig. 1. In particular, we observe that
some techniques (namely GitHub account type, “bot” suffix
and list of bots) have a perfect precision but are not able to
capture as many bots as BoDeGiC. This should not come as
a surprise. For example, it is expected that GitHub account
type has no false positive since it is unlikely that a human
contributor would decide to flag his/her own account as a
bot. Similarly, list of bots relies on a predefined list of bot
names that were manually validated by a group of researchers.
On the other hand, the precision reached by “bot” suffix is
surprisingly high since in previous work [9], we found that
only around 4% of the contributors having “bot” in their name
actually correspond to human contributors.

As observed from Fig. 1, only 4 of the actual bots are

https://github.com/mehdigolzadeh/BoDeGHa
https://github.com/mehdigolzadeh/BoDeGiC


bot human

Fig. 1: Classifications (“bot”, “human” or “unknown”) obtained from the five bot detection techniques. Only actual bots and
humans wrongly classified as bot are displayed.

TABLE I: Recall, precision and F1-score of bot detection techniques (in ascending order of bot recall).

bots humans overall (weighted scores)
bot detection technique recall precision F1-score recall precision F1-score recall precision F1-score

Baseline ZeroR 0.000 0.000 0.000 1.000 0.907 0.951 0.907 0.823 0.863

GitHub account type 0.360 1.000 0.529 1.000 0.939 0.968 0.941 0.944 0.928
BoDeGHa 0.500 0.455 0.476 0.939 0.948 0.944 0.898 0.903 0.900

“bot” suffix 0.520 1.000 0.684 1.000 0.953 0.976 0.956 0.958 0.949
List of bots 0.620 1.000 0.765 1.000 0.963 0.981 0.965 0.966 0.961

BoDeGiC 0.680 0.791 0.731 0.982 0.968 0.975 0.954 0.951 0.952

EnsBoD 0.900 0.865 0.882 0.986 0.990 0.988 0.978 0.978 0.978

not detected as such by any of the techniques. This suggests
that an improved bot detection model can be created by
combining the five aforementioned techniques. We build such
a model by training a decision tree classifier taking as input
the classifications made by each of the five techniques and
outputting whether the corresponding contributor is a bot or a
human contributor. Since our dataset has a fairly imbalanced
number of human and bot contributors, we attributed a class
weight inversely proportional to the number of cases. The
resulting model is called EnsBoD. We trained and validated it
following a 10-fold cross-validation process. The mean scores
we obtained are reported on the last row of Table I. Even if
it was trained and validated on a small dataset, the EnsBoD
model already outperforms any of the five other techniques,
with an average recall of 0.9 and an average precision of
0.865 for bots. In the remaining of this paper, we will rely
on EnsBoD to separate bots that are correctly identified as
bots by a bot detection technique and those that were not,
providing an overly optimistic view of the ability to detect
bots automatically.

RQ2: How prevalent are bots among the most active contrib-
utors?

In Section I we underlined the importance of detecting bots
in software repositories, not only for researchers aiming at
quantifying and understanding their impact on the develop-
ment process, but also for properly recognizing and rewarding
contributions made by human contributors. This question aims
to quantify the prevalence of bots among the 20 most active
contributors in the 27 considered projects.

We applied EnsBoD on each of the 540 contributors of
our dataset to quantify how many of them can be captured
by the bot detection technique. Fig. 2 shows the output of
EnsBoD for each project (x-axis) and each contributor (y-axis)
sorted by the number of commits they made in the project. In

complement to the output of EnsBoD (i.e., “bot” or “human”),
we indicate whether the output is correct (“human user” and
“correctly classified bot”) or not (“human classified as bot”
and “missed bot”).

projects

20
18
16
14
12
10
8
6
4
2

co
nt

rib
ut

or
 ra

nk

human user
human classified as bot

correctly classified bot
missed bot

Fig. 2: Rank of top 20 most active contributors in 27 popular
open-source software projects.

We observe that all the considered projects are making use
of bots, some of them even having 4 different bots among
their 20 most active contributors. Interestingly, many of these
bots are responsible for most of the activity in the projects.
For instance, the most active contributor of 6 projects is a bot,
while 18 out of 27 projects have a bot in the top 3 contributors.

We also observe that a non-negligible amount of bots are
missed even by our overly optimistic EnsBoD model. For
instance, 5 bots are missed and 3 of them are among the
5 most active contributors of the projects. Similarly, a non-
negligible amount of actual human contributors are wrongly



classified by EnsBoD: there are 7 human contributors that are
detected as bots, of which 1 is the most active contributor in
the corresponding project, and 5 others are within the 10 most
active contributors.

These findings show the importance of considering bots and
their activity in software repositories, not only for conducting
empirical research but also when acknowledging or rewarding
contributors. While bot detection techniques can help in doing
so, even an optimistic combination of them still misses some
bots, and still wrongly considers some human contributors as
bots.

RQ3: How active are bots in terms of commits?

This question aims to quantify the number of commits made
by bots in their respective projects. This is especially important
given that tools such as SourceCred reward contributors based
on their activity, including their commit activity. For each
project, we counted the commits made by each of the 20 most
active contributors, distinguishing between bot and human
contributors. Fig. 3 reports on the proportion of commits
made in each commit. As for Fig. 2, we distinguish between
human contributors, human contributors classified as bots, bot
contributors and bot contributors missed by EnsBoD.

proportion of commits

pr
oj

ec
ts

0.4 99.6
1.1 98.9
1.7 96.8 1.5

2.4 97.6
3.3 96.7

4.2 95.8
4.3 95.7
4.6 95.4
5.7 94.3
6.0 94.0
7.3 92.7

5.7 2.5 91.8
12.0 83.2 4.8

12.2 87.8
12.3 86.5 1.2
13.0 87.0
14.4 85.6

6.5 8.0 85.5
17.9 82.1
18.6 81.4
19.7 41.9 38.4

28.4 66.7 4.8
31.4 68.6

35.3 64.7
35.9 64.1
36.3 52.2 11.5

69.7 30.3

human user
human classified as bot

correctly classified bot
missed bot

Fig. 3: Proportion of commits made by the 20 most active
contributors in each project

The figure shows that the commits made by bots represent
up to 69.7% of the commit activity. On average, approximately
16% of the commits in these projects are made by bots (median
is 12%), even if bots only account for 9% of the top 20
contributors on average (median is 10%)

While, as observed in previous research question, EnsBoD
is able to detect most of the bots, it still misses some of them,
and the missed ones are responsible for 8%, 7.3%, 4.2%, 2.5%

and 1.7% of the commits in their respective projects (i.e., 4.7%
on average). On the other hand, EnsBoD wrongly classified
seven human contributors as bots, and these contributors were
responsible for 38.4%, 11.5%, 4.8%, 1.5% and 1.2% of the
commits (i.e., 10.4% on average).

This again underlines the importance of considering bots
when analysing commit activity in software repositories, and
highlights the need for better bot detection techniques to do
so.

IV. CONCLUSION

The increasing presence and activity of bots in software
repositories makes it challenging for software engineering
researchers to study socio-technical aspects of software de-
velopment since their findings may be biased by not explicitly
considering the presence of bots among the contributors.
Similarly, it may be important for human contributors that their
contributions are properly identified, especially when funding
or donations are awarded based on these contributions.

In this paper, we presented an exploratory study on the
accuracy of five bot detection techniques on a dataset of
540 contributors corresponding to the top 20 most active
contributors in 27 large projects. We found that none of the
techniques is perfectly effective in detecting bots. Some of
them are accurate, in the sense they generate few (if any)
false positives, but at the expense of many bots that remain
undetected. However, based on the observation that only a very
limited number of bots remain undetected by any of the five
techniques, we proposed EnsBoD, a new bot detection model
combining these techniques. We evaluated EnsBoD through a
10-fold cross-validation process, and we found that EnsBoD
exhibits much better scores. Although this new model has
not (yet) been validated on a large dataset, it already shows
that combining several bot detection techniques drastically
improves bot detection. It correctly captures 45 out of the
50 bots we have in the dataset. On the other hand, it still
misclassified 7 human contributors as bot, out of 490.

In a second step, we investigated the prevalence of bots
among the top contributors of the 27 considered projects. We
found that all the projects make use of a few bots. We also
found that bots are commonly found among the most active
contributors and are responsible for large proportions of com-
mits in these projects, highlighting the need to consider them
when conducting socio-technical studies or when rewarding
contributors.

As future work, we plan (1) to extend EnsBoD by integrat-
ing additional bot detection techniques (e.g., BIMAN [11]);
(2) to compare different ensemble methods to combine them;
and (3) to evaluate and validate the approach on a much larger
dataset, not only focusing on the 20 most active contributors.

ACKNOWLEDGEMENT

This work is supported by DigitalWallonia4.AI research
project ARIAC (grant number 2010235), as well as by the
Fonds de la Recherche Scientifique – FNRS under grant
numbers O.0157.18F-RG43 and T.0017.18.



REFERENCES

[1] F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang. Network structure
of social coding in GitHub. In European Conference on Software
Maintenance and Reengineering (CSMR), pages 323–326, 2013.

[2] Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner.
An empirical study of bots in software development: Characteristics and
challenges from a practitioner’s perspective. In ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages 445–455.
ACM, 2020.

[3] Marvin Wyrich and Justus Bogner. Towards an autonomous bot for
automatic source code refactoring. International Workshop on Bots in
Software Engineering (BotSE), pages 24–28, 2019.

[4] Martin Monperrus, Simon Urli, Thomas Durieux, Matias Martinez,
Benoit Baudry, and Lionel Seinturier. Repairnator patches programs
automatically. Ubiquity, (July):1–12, 2019.

[5] S Mirhosseini and C Parnin. Can automated pull requests encourage soft-
ware developers to upgrade out-of-date dependencies? In International
Conference on Automated Software Engineering (ASE), pages 84–94,
2017.

[6] Carlene Lebeuf, Alexey Zagalsky, Matthieu Foucault, and Mar-
garet Anne Storey. Defining and classifying software bots: A faceted
taxonomy. 1st International Workshop on Bots in Software Engineering,
pages 1–6, 2019.

[7] Samaneh Saadat, Natalia Colmenares, and Gita Sukthankar. Do bots
modify the workflow of github teams? In 2021 IEEE/ACM Third
International Workshop on Bots in Software Engineering (BotSE), pages
1–5, 2021.

[8] Mairieli Wessel, Igor Wiese, Igor Steinmacher, and Marco Aurelio
Gerosa. Don’t disturb me: Challenges of interacting with software
bots on open source software projects. Human-Computer Interaction,
5, 2021.

[9] Mehdi Golzadeh, Alexandre Decan, Damien Legay, and Tom Mens.
A ground-truth dataset and classification model for detecting bots in
GitHub issue and PR comments. Journal of Systems and Software, 175,
2021.

[10] Claudia Hauff and Georgios Gousios. Matching GitHub developer
profiles to job advertisements. In Working Conference on Mining
Software Repositories, pages 362–366. IEEE/ACM, 2015.

[11] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan
Vasilescu, Anna Filippova, and Audris Mockus. Detecting and charac-
terizing bots that commit code. In International Conference on Mining
Software Repositories, pages 209–219. ACM, 2020.

[12] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. Evaluating a
bot detection model on git commit messages. In 19th Belgium-
Netherlands Software Evolution Workshop (BENEVOL), volume 2912.
CEUR Workshop Proceedings, 2020.

[13] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in
github for MSR studies. In 18th IEEE/ACM International Conference on
Mining Software Repositories, MSR 2021, pages 560–564. IEEE, 2021.


	Introduction
	Methodology
	Findings
	Conclusion
	References

